首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Year‐to‐year changes in the weather have a profound effect on the seasonal dynamics of zooplankton in lakes. Here, I analyse some zooplankton data from Esthwaite Water in Cumbria and demonstrate that much of the recorded inter‐annual variation can be related to regional‐scale changes in the weather.
2. The first data set analysed shows the effect of changes in the water temperature on the winter abundance of the calanoid copepod Eudiaptomus gracilis. The highest numbers of Eudiaptomus were recorded when the winters were mild and the lowest when the winters were cold.
3. Winter temperatures in northern and western Europe are now known to be influenced by the atmospheric feature known as the North Atlantic Oscillation (NAO). Positive values of the NAO are associated with mild winters and westerly winds and there was a significant positive correlation between the winter abundance of Eudiaptomus in Esthwaite Water and this empirical index of change.
4. The second data set analysed shows the effect of wind‐induced mixing on the summer abundance of Daphnia. The highest numbers of Daphnia were recorded in years when the early summer thermocline was deep and the lowest number in years when the thermocline was shallow.
5. One of the most important factors influencing the depth of the early summer thermocline in the English lakes is the position of the north‐wall of the Gulf Stream. Southerly movements of the Gulf Stream are typically associated with higher winds, whilst northerly movements are associated with stable conditions. In Esthwaite Water, a significant positive correlation was recorded between the abundance of Daphnia and the depth of the early summer thermocline and significant negative correlations between the same variables and the position of the Gulf Stream.
6. A detailed analysis of the seasonal variations recorded in one calm and one windy year suggest that the main factor responsible for these correlations was the entrainment of nutrients which then stimulated the growth of edible algae. Daphnia numbers were low in 1968 (a ‘north’ Gulf Stream year which was relatively calm) and high in 1972 (a ‘south’ Gulf Stream year with intense wind‐mixing).  相似文献   

2.
1. Experimental studies have indicated in freshwater ecosystems that a shift in dominance from submerged to free‐floating macrophytes may occur with climate change because of increased water surface temperatures and eutrophication. Field evidence is, however, rare. 2. Here, we analysed long‐term (26 years) dynamics of macrophyte cover in Dutch ditches in relation to Dutch weather variables and the North Atlantic Oscillation (NAO) winter index. The latter appears to be a good proxy for Dutch weather conditions. 3. Cover of both free‐floating macrophytes and evergreen overwintering submerged macrophytes was positively related to mild winters (positive NAO winter index). On the other hand, high cover of submerged macrophytes that die back in winter coincided with cold winters (negative NAO winter index). Our results therefore suggest that the effect of weather on macrophyte species depends strongly on their overwintering strategy. 4. The positive relation of free‐floating macrophytes with the NAO winter index was significantly stronger in ditches in organic soil than in those in inorganic soil. This may be because of increased nutrient loading associated with increased decomposition of organic matter and increased run‐off to these ditches during mild wet winters. 5. Our results suggest that mild winters in a changing climate may cause submerged macrophytes with an evergreen overwintering strategy and free‐floating macrophytes to outcompete submerged macrophytes that die back in winter.  相似文献   

3.
1. A number of planktonic cyanobacteria species form resting stages that survive in the sediments of lakes. The significance of this life history strategy to the ecology of new planktonic populations was investigated in Esthwaite Water, a mesotrophic lake in the English Lake District.
2. A simple trapping technique was used to quantify vertical movements of five species of buoyant gas-vacuolate cyanobacteria from close to the sediments, along a depth transect.
3. 'Recruitment' from the sediments was found to be widespread amongst the cyanobacteria species associated with the summer phytoplankton community.
4. Estimates of the vertical upward fluxes of cyanobacteria based upon trap catches could not account for observed increases in the planktonic populations suggesting that 'recruitment' was not a significant source of biomass.
5. Vertical upward movements of Anabaena solitaria were recorded prior to this species becoming established in the plankton suggesting that benthic populations might be a source of cells for initial pelagic growth of populations of this species.
6. Low numbers of vegetative filaments of Anabaena flos-aquae , Aphanizomenon flos-aquae and Oscillatoria agardhii were observed in the plankton through the winter. These small overwintering populations appeared to be the primary source of inocula for the large summer populations of these species.  相似文献   

4.
1. Thirty‐six years of winter meteorological and limnological measurements from four lakes in the English Lake District are analysed and related to variations in the North Atlantic Oscillation (NAO). Winter weather conditions were strongly influenced by the NAO with mild, wet winters being associated with strongly positive values of the NAO index (NAOI). 2. Lake surface and bottom temperatures were strongly positively correlated with the NAOI, with the highest correlations being recorded in the shallower lakes. 3. Variations in the NAOI also had a significant effect on the winter concentration of nitrate. In all the lakes, there was a significant negative correlation between the NAOI and the detrended winter concentration of nitrate. The key driving variable was the local air temperature, which appeared to limit the quantity of nitrate reaching the lake by increasing the amount assimilated in the surrounding catchment in mild winters. 4. Dissolved reactive phosphorus (DRP) concentrations were not significantly correlated with the NAOI in the two larger basins but significant positive correlations were recorded in the two smaller lakes. The key driving variable was the local rainfall with higher DRP concentrations being recorded after heavy rain in the lakes with a short retention time. 5. The NAOI‐related changes in rainfall also influenced the phytoplankton. In wet winters the concentration of chlorophyll in the two smaller lakes with the shortest retention time was lower and the spring growth of Asterionella formosa was delayed in the smallest lake. 6. These differential responses demonstrate how the large‐scale effects associated with the NAO can be ‘filtered’ by the physical characteristics of a particular site.  相似文献   

5.
Climate patterns and the stochastic dynamics of migratory birds   总被引:3,自引:0,他引:3  
We analyse time series data of 17 bird species trapped at Ottenby Bird Observatory, Sweden, during spring migration 1972–1999. The species have similar demography but respond differently to variation in the North Atlantic Oscillation (NAO) – a strong determinant of winter climate in the northern Hemisphere. Species wintering in northern Europe, compared to species having winter quarters in the Mediterranean area, tend to respond positively to variation in NAO. The variation within each group is high due to wide-ranging winter-distribution in many species, probably smoothing out the effect of spatial variation in NAO. Whereas mild winters (high NAO) is benign for many – but not all – birds wintering in northern Europe, the effect of drier-than-normal conditions in the Mediterranean area during high NAO index winters are uncertain. The work presented here goes beyond simple correlative studies and help identifying which species that are most affected by variation in winter climate. This is a first important step that calls for a more mechanistic approach when analysing possible changes to climate change.  相似文献   

6.
 Following predictions from climatic general circulation models, the effects of perturbations in global climate are expected to be most pronounced in the Northern Hemisphere. Elaborating on a recently developed plant–herbivore–climate model, we explore statistically how different winter climate regimes and density-dependent processes during the past century have affected population dynamics of two arctic ungulate species. Our analyses were performed on the dynamics of six muskox and six caribou populations. In muskoxen, variation in winter climate, mediated through the North Atlantic Oscillation (NAO), explained up to 24% of the variation in interannual abundance, whereas in caribou up to 16% was explained by the NAO. Muskoxen responded negatively following warm and snowy winters, whereas caribou responded negatively to dry winters. Direct and delayed density dependence was recorded in most populations and explained up to 32% and 90% of variations in abundance of muskoxen and caribou, respectively. Received: November 19, 2001 / Accepted: May 28, 2002  相似文献   

7.
Numbers and species composition of filter-feeding Cladocera and Calanoida occurring in the near-bottom water layer in different seasons of the year and at different depths were compared with their occurrence in the pelagial. Specific species for the near-bottom water layer were not recorded, but numbers of crustaceans were frequently higher in this layer than numbers noted in the pelagial. The food availability may be one of the reasons for the abundance of filter-feeders close to the bottom. Two species:Bosmina longirostris andEudiaptomus graciloides formed aggregations in particular parts of the lake at various seasons: in autumn the highest densities of these species were in the near-bottom layer and closer to the shore, in winter — in close to the bottom in the deepest part of the lake, in spring and summer  相似文献   

8.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

9.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

10.
It is widely assumed that winter is a critical time for homeotherms because of decreased ambient temperatures coupled with reduced food supply. Shrews are excellent models for investigating overwintering strategies, not only because of their particularly small size, high energy requirements relative to their size and short fasting endurance, but also the dramatic reduction in body size (Dehnel's phenomenon) exhibited by soricine shrews in northern temperate winters. The cause of Dehnel's phenomenon is poorly understood but food supply is implicated. To test the hypothesis that winter at higher latitudes is a period of food shortage for small homeotherms, we compared feeding habits of common shrews, Sorex araneus, and abundance and biomass of their prey in winters and summers in northeastern Poland using scat analysis combined with pitfall and ground core sampling for invertebrates. Ground‐surface activity and numbers of invertebrates in pitfall traps were greatly reduced in winter but, contrary to prediction, no significant differences between winter and summer were found in total numbers and biomass of prey invertebrates in ground core samples. However, certain prey types changed seasonally with respect to numbers, biomass and distribution in the soil profile, which was reflected in shrews’ food composition and foraging behaviour. Dehnel's phenomenon appears not to be caused by reduction in total prey numbers and biomass, at least in our study area. Smaller body mass coupled with lowering of absolute food requirements may have important survival value in winter with its reduced numbers of certain major prey coupled with increased difficulty of locating and extracting invertebrates within the soil profile resulting in higher energetic costs of foraging.  相似文献   

11.
SUMMARY. 1. The factors influencing the seasonal and inter-annual variations in the numbers of Daphnia hyalina in Esthwaite Water between 1956 and 1972 are analysed. Esthwaite Water has always been eutrophic. but the phosphorus and nitrogen loadings to the lake increased significantly in the mid 1960s. 2. Qualitatively, the phytoplankton and zooplankton populations in the lake changed relatively little during the period of study. Quantitatively, however, eutrophic species of algae became more abundant and the numbers of Eudiaptomus declined as the numbers of Daphnia increased. 3. The seasonal dynamics of the Daphnia was governed partly by the seasonal temperature cycle, and partly by the periodicity of edible algae. The birth rate of the Daphnia was constrained by temperature from January to April and from October to December. At other times their rate of increase was governed by the relative abundance of edible and inedible algae. 4. Edible and inedible species of algae tended 10 appear in a recurring annual sequence. Diatoms such as Asterionella were abundant in the spring, the early summer phytoplankton was dominated by edible flagellates, but inedible algae such as Aphanizomenon and Microcystis become dominant later in the year. 5. Daphnia could only reproduce in late summer when there were periodic regrowths of edible algae. Such regrowths were most likely to occur when there had been some entrainment of deep nutrients by episodic wind mixing. Calm weather encouraged the growth of blue-green algae that effectively‘blocked’the development of the Daphnia for the remainder of the summer. 6. The factors that controlled the seasonal dynamics of the Daphnia also influenced the average number recorded in a particular year. The average number of Daphnia increased in the early sixties when Cryptomonas was abundant and decreased in the late sixties when blooms of Aphanizomenon appeared in mid summer. Detailed analyses showed that a similar increase in the numbers of Aphanizometion had occurred in the late fifties. The critical factor throughout was the prolonged period of calm resulting in stable stratification. 7. This ‘weather’ effect was highlighted by comparing de-trended timeseries of Daphnia and Aphanizometion numbers with a simple measure of thermocline stability. De-trending removed the superimposed effects of progressive enrichment and revealed a 10-year cycle of thermocline stability that matched the temperature cycle recently reported in Windermere, These cycles are related to the movement of weather systems in the Atlantic so could change if the pattern of atmospheric circulation is altered by global warming. 8. The possible effects of climate change on Daphnia dynamics are discussed in relation to the findings in Esthwaite Water.  相似文献   

12.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

13.
Climatic variation associated with the North Atlantic Oscillation (NAO) influences terrestrial and marine ecosystems, but its effects on river and stream ecosystems are less well known. The influence of the NAO on the growth of stream insects was examined using long-term empirical data on the sizes of mayfly and stonefly nymphs and on water temperature data. Models of egg development and nymphal growth in relation to temperature were used to predict the effect of the NAO on phenology. The study was based in two upland streams in mid-Wales UK that varied in the extent of plantation forestry in their catchments. Winter stream temperatures at both sites were positively related to the winter NAO index, being warmer in positive phases and colder in negative phases. The observed mean size and the simulated developmental period of mayfly nymphs were significantly related to the winter NAO index, with nymphs growing faster in positive phases of the NAO, but the growth of stonefly nymphs was not related to the NAO. This may have been due to the semivoltine stonefly lifecycle, but stonefly nymph growth is also generally less dependent on temperature. There were significant differences in growth rates of both species between streams, with nymphs growing more slowly in the forested stream that was consistently cooler than the open stream. Predicted emergence dates for adult mayflies varied by nearly two months between years, depending on the phase of the NAO. Variation in growth and phenology of stream insects associated with the NAO may influence temporal fluctuations in the composition and dynamics of stream communities.  相似文献   

14.
Justin D. Hart 《Bird Study》2020,67(2):245-250
ABSTRACT

A ‘call count’ survey of Water Rails Rallus aquaticus, using broadcast vocalizations to elicit a response, was carried out on Alderney over two consecutive winters. The species was found to be widespread on the island, with 34 birds found in both winters. Most, 62% in each winter, occurred in habitats associated with water, but 38% unexpectedly occupied drier habitat. The survey presents new information on Water Rail abundance, distribution and habitat use on the island, and indicates that the species does not always require access to wet ground in winter.  相似文献   

15.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

16.
In the 1970s and 1980s, the nominate subspecies of the Lesser Black-backed Gull (Larus fuscus fuscus) showed a dramatic drop in breeding numbers on the Norwegian Coast, and in 2000, the population in some colonies was only 10–20% of the population in 1980. This decline has been attributed to the collapse in the stock of Norwegian spring spawning herring (Clupea harengus). In this study, we examined whether local climate (sea and air temperatures), winter NAO (North Atlantic Oscilliation), and the year-class strength and size of 0-group herring could predict the relative changes in breeding numbers between years, mainly after the population collapse. Breeding birds were counted in 19 of the years between 1980 and 2007 in an archipelago on the coast of Helgeland, northern Norway. The best model predicting changes in breeding numbers for the period between 1980 and 2005 (for which data on 0-group herring was available) included mean local air temperature in winter (January–March) and winter NAO, explaining 57% of the variation between years, while the other factors had little effect. When also adding the years 2006–2007 (no herring data), the best model included only mean air temperature in winter, explaining 41% of the variation. In conclusion, the high positive correlation between breeding numbers and climatic factors probably resulted from a higher availability of important fish prey after mild winters, for which 0-group herring presently may only account for a limited proportion. However, this prey might have been of much more importance prior to the population decline.  相似文献   

17.
To assess whether, while overwintering, natural populations of Drosophila pseudoobscura are likely to experience substantial bottlenecks in their numbers and genotypes, laboratory tests of the cold sensitivities of each stage of the life history and reproduction were undertaken. Three genetically distinctive lineages established from flies caught at high elevation were used for testing in temperatures likely to persist in protected pockets of fermenting deciduous leaf fall in overwintering sites. Sensitivities to cold of each stage in development were measured as frequencies of survival to adulthood following a period in 5 degrees C in a particular stage. The cold sensitivity of adults was measured as the survival in and following cold stays in adulthood. It was found that cold sensitivity decreases as development progresses, but that only adults (females more than males) are able to withstand long periods in the cold. The cold sensitivity of reproductive capacity of males was scored as their success in mating following a two-month cold stay, and of females as the numbers laying fertile eggs following periods of months in the cold. Both males and females maintain reproductive capacity. Of particular significance, however, is that even after six months in the cold females are able to restart production of eggs and these eggs may be fertilized by the sperm of matings prior to their cold stay. Thus, a substantial proportion of overwintering genomes must be those of adult females and those of the sperm carried by females from matings in the previous summer. This simple finding strongly suggests that populations are not likely to suffer substantial bottlenecks while overwintering. Further, it indicates how arrays of genetic variation may be maintained through winters and largely avoid winter selective pressures. Frequent migration between populations is therefore not required to maintain the variation commonly found in populations throughout the species range.  相似文献   

18.
How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice‐covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter‐severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait‐based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter‐severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice‐cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different communities at the vernal equinox, which may have different nutritional quality for the next trophic level and ecosystem‐scale effects.  相似文献   

19.
Review of winter trophic relations of soricine shrews   总被引:3,自引:0,他引:3  
This paper attempts to review all those factors that affect the winter trophic relations of soricines in northern, Holarctic areas, from physiological and ecological aspects to prey and predators. Winter is generally a time of food scarcity and low temperatures, often accompanied by snow cover. Winter shrews are characterized by decreased metabolic rates, longer periods in the nest, short foraging periods and the subsequent decreased need to forage. In smaller species the diet generally consists of epigean fauna, while in larger species hypogean fauna is also included, the proportions of which vary seasonally. In areas of snow cover their diets are derived from the subnivean fauna, i.e. soil and litter fauna, overwintering on the soil surface, and consist of many insects, especially beetles, arachnids, small vertebrates and carrion. Their predators include owls and, to a lesser extent, weasels and foxes.  相似文献   

20.
1. Climate warming may cause disruption of trophic linkages in aquatic ecosystems and lead to changes in abundance and genetic structure of zooplankton populations. We monitored the community of the Daphnia galeata‐hyalina hybrid complex in the Saidenbach Reservoir (Saxony, Germany) using allozyme electrophoresis for three consecutive years (2005–07), including one (2007) following an unusually warm winter that prevented the formation of ice cover for the first time in the history of the reservoir. 2. Genetic composition during the 2007 season differed substantially from the two preceding years that experienced the usual 3‐month ice period. Three abundance peaks in June, July and October 2007 were dominated by hybrids of Daphnia galeata x hyalina, whereas in the 2005 and 2006 seasons two peaks in June and September were dominated by Daphnia hyalina genotypes. 3. The genetic composition of the pool of diapausing eggs produced in autumn and the rate of change of genotype abundance during the following spring indicate recruitment of the D. hyalina subpopulation from ex‐ephippial animals during the spring population increase. 4. The differing potential to contribute to the overwintering animal pool or to the inoculum from diapausing eggs was confirmed by results from laboratory life‐table experiments. Daphnia galeata clones survived longer and produced parthenogenetic offspring under winter conditions, whereas D. hyalina clones showed a shorter lifespan and produced resting eggs. 5. Our results indicate a profound role of recruitment strategy in the observed shift in genetic composition. Increasing winter temperatures predicted in the context of climate change may thus favour overwintering animals, leading to an increase in the contribution of these genotypes to the population. Such microevolutionary processes may dampen possible seasonal mismatches between daphnid populations and their food or predator populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号