首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The galactomannan is a major cell wall molecule of Aspergillus fumigatus. This molecule is composed of a linear mannan with a repeating unit composed of four α1,6 and α1,2 linked mannose with side chains of galactofuran. To obtain a better understanding of the mannan biosynthesis in A. fumigatus, it was decided to undertake the successive deletion of the 11 genes which are putative orthologs of the mannosyltransferases responsible for establishing α1,6 and α1,2 mannose linkages in yeast. These deletions did not lead to a reduction of the mannan content of the cell wall of the mycelium of A. fumigatus. In contrast, the mannan content of the conidial cell wall was reduced and this reduction was associated with a partial disorganization of the cell wall leading to defects in conidial survival both in vitro and in vivo.  相似文献   

2.
Blastospores of Candida albicans were readily agglutinated by Concanavalin A (Con A) owing to the specific binding of this lectin to the mannan receptors of the cell surface. When mannan was extracted from the cell wall by neutral buffers, alkali and acid, the agglutination was decreased or lost depending on the degree of extraction. A relatively mild alkali treatment was sufficient to derange the multilayered wall organization and transform it into a uniform, medium-density structure having about the same thickness as the untreated wall. After a more drastic extraction, all the electron-dense components of the wall were lost, the residual, alkali-insoluble wall fabric being completely electron-transparent and of about the same thickness as the inner wall region of untreated cells. Thiol-reducing agents like mercaptoethanol or dithiothreitol also extracted wall materials, an effect which was enhanced by pronase. After dithiothreitol-pronase treatment, the outer wall layers were removed but the inner wall region was not apparently damaged and some electron-dense components remained. None of these treatments significantly affected blastospore agglutination by Con A--this was reduced (but not abolished) only by the sequential action of pronase and helicase, which led to sphaeroplast formation. These sphaeroplasts showed a varied amount of residual wall consisting of evenly distributed, fibrogranular components. Two main conclusions were drawn from these results: (i) mannan polymers extend throughout the wall of the blastospore of C. albicans; (ii) the layering of the wall, as seen by ordinary fixation and staining for electron microscopy, essentially reflects the distribution of the various alkali-soluble complexes, at different levels, both over and in the rigid, glucan-chitin matrix.  相似文献   

3.
P. Bachmann  K. Zetsche 《Planta》1979,145(4):331-337
The synthesis of cell wall mannan and the activities of guanosine-diphosphate-mannose-pyrophosphorylase (EC2.7.7.13) and mannan synthetase were studied during the development of nucleate and enucleated cells of the alga Acetabularia mediterranea. The activities of both enzymes are relatively high as long as the cells grow and synthesize mannans. With termination of growth and mannan synthesis, the activities of both enzymes, but especially of mannan synthetase, drop to a low value. Furthermore, the activities of both enzymes are distributed in the cell along an apical-basal gradient. High activities are present in the apical regions of the cell where growth and mannan synthesis mainly occur, whereas in the basal region, growth, mannan synthesis and the activity of the two enzymes are slight. Since the in vitro activity of GDP-Man-pyr is at least 100 times higher than that of mannan synthetase, it was concluded that mannan synthetase activity is the limiting factor in mannan synthesis. This conclusion is supported by the determined pool sizes of Fru 6-P, Man 6-P, Man 1-P and GDP-Man during the development of the cells. The control of mannan synthesis and with it cell wall formation and growth through the regulation of mannan synthetase activity is discussed.Abbreviations DD dark-dark regime - Fru 6-P fructose-6-phosphate - GDP-Man guanosine-diphosphate-mannose - GDP-Manpyr GDP-diphosphate-mannose-pyrophosphorylase - GTP guanosine-triphosphate - LD light-dark regime - Man 1-P mannose-1-phosphate - Man 6-P mannose-6-phosphate - TCA trichloracetic acid  相似文献   

4.
The mode of increase in cell wall polysaccharides of yeast (glucan and mannan) during cell cycle was analyzed using cell wall samples obtained from a synchronous culture. The increase in mannan and total glucan proceeded almost linearly throughout the cell cycle except for a short period of their leveling off at the time of cell division. However, the constituents of glucan behaved characteristically: Alkalisoluble glucan and insoluble glucan increased mainly in the former and the latter half of the cell cycle, respectively.  相似文献   

5.
Changes in the ultrastructure and chemistry of the cell wall of the unicellular volvocalean green alga Haematococcus pluvialis were investigated during the transformation of flagellates into aplanospores. The motile biflagellated state exhibited a distinct gelatinous extracellular matrix. Its ultrastructure resembled the typical volvocalean multilayered architecture with a median tripartite crystalline layer. The transformation into the non-motile cell state was characterized by formation of a new layer, a primary wall, within the extracellular matrix. During this process, the initial extracellular matrix remained intact except for the outer layers of the tripartite crystalline layer, which decomposed. Further morphogenesis of the aplanospore resulted in the formation of a voluminous multilayered cell wall. A trilaminar sheath was formed inside the primary wall and the innermost and thickest part was an amorphous secondary wall, consisting mostly of a mannan. Results obtained by staining with the fluorescent dye primuline as well as by acetolysis suggest the occurrence of sporopollenin-like material (algaenan) within the trilaminar sheath of the aplanospore cell wall. The primary wall and the outer remnants of the extracellular matrix disintegrated as the aplanospores aged, and were completely absent in the resting cell state.  相似文献   

6.
The structure of a glycopeptide isolated from the yeast cell wall   总被引:21,自引:8,他引:13       下载免费PDF全文
1. Glycopeptides containing mannose were extracted from isolated yeast cell walls by ethylenediamine and purified by treatment with Pronase and fractionation on a Sephadex column. 2. A glycopeptide that appeared homogeneous on electrophoresis and ultracentrifugation had a molecular weight of 76000, and contained a high-molecular-weight mannan and approx. 4% of amino acids. 3. The amino acid composition of the peptide was determined. It was rich in serine and threonine and also contained glucosamine. No cystine and methionine were detected. 4. The glycopeptide underwent a beta-elimination reaction when treated with dilute alkali at low temperatures. The reaction resulted in the release of mannose, mannose disaccharides and possibly other low-molecular-weight mannose oligosaccharides. During the beta-elimination reaction the dehydro derivatives of serine and threonine were formed. One of the linkages between carbohydrate and amino acids in the glycopeptide is an O-mannosyl bond from mannose and mannose oligosaccharides to serine and threonine. 5. After the beta-elimination reaction the bulk of the mannose in the form of the large mannan component was still covalently linked to the peptide. This polysaccharide was therefore attached to the amino acids by a linkage different from the O-mannosyl bonds to serine and threonine that attach the low-molecular-weight sugars. 6. Mannan was prepared from the glycopeptide and from the yeast cell wall by treatment of the fractions with hot solutions of alkali. The mannan contained aspartic acid and glucosamine and some other amino acids. The aspartic acid and glucosamine were present in equimolar amounts; the aspartic acid was the only amino acid present in an amount equivalent to that of glucosamine. Thus there is the possibility of a linkage between the mannan and the peptide via glucosamine and aspartic acid. 7. Mannose 6-phosphate was shown to be part of the mannan structure. Information about the structure of the mannan and the linkage of the glucosamine was obtained by periodate oxidation studies. 8. The glucosamine present in the glycopeptide could not be released by treatment with an enzyme preparation obtained from the gut of Helix pomatia. This enzyme released glucosamine from the intact cell wall. Thus there are probably at least two polymers containing glucosamine in the cell wall. 9. The biosynthesis of the mannan polymer in the yeast cell wall is discussed with regard to the two types of carbohydrate-amino acid linkages found in the glycoprotein.  相似文献   

7.
Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.  相似文献   

8.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

9.
The cell wall of Candida albicans is central to the yeasts ability to withstand osmotic challenge, to adhere to host cells, to interact with the innate immune system and ultimately to the virulence of the organism. Little is known about the effect of culture conditions on the cell wall structure and composition of C. albicans. We examined the effect of different media and culture temperatures on the molecular weight (Mw), polymer distribution and composition of cell wall mannan and mannoprotein complex. Strain SC5314 was inoculated from frozen stock onto yeast peptone dextrose (YPD), blood or 5% serum agar media at 30 or 37°C prior to mannan/mannoprotein extraction. Cultivation of the yeast in blood or serum at physiologic temperature resulted in an additive effect on Mw, however, cultivation media had the greatest impact on Mw. Mannan from a yeast grown on blood or serum at 30°C showed a 38.9 and 28.6% increase in Mw, when compared with mannan from YPD-grown yeast at 30°C. Mannan from the yeast pregrown on blood or serum at 37°C showed increased Mw (8.8 and 26.3%) when compared with YPD mannan at 37°C. The changes in Mw over the entire polymer distribution were due to an increase in the amount of mannoprotein (23.8-100%) and a decrease in cell wall mannan (5.7-17.3%). We conclude that C. albicans alters the composition of its cell wall, and thus its phenotype, in response to cultivation in blood, serum and/or physiologic temperature by increasing the amount of the mannoprotein and decreasing the amount of the mannan in the cell wall.  相似文献   

10.
AIM: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. METHODS AND RESULTS: Chemical and enzymatic methods were used to determine levels of beta-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between beta-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of beta-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of beta-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.  相似文献   

11.
The surface-localized polysaccharide of alkane-grown cells of Candida tropicalis was identified as mannan containing approximately 4% covalently linked fatty acids. Glucose-grown cells lacked the mannan-fatty acid complex. The surface structure of alkane-grown cells showed a radial arrangement of the wall polymers, with protruding parts. The cell surface of glucose-grown cells was smooth, with a coherent outer limit. The mannan was localized by using concanavalin A. Masking of the mannan with concanavalin A reduced the binding affinity of the surface for alkane, indicating the involvement of the surface-localized mannan-fatty acid complex in the binding of alkanes.  相似文献   

12.
The polysaccharide components (mannan and glucan) in the cell wall ofCandida boidinii M 363 grown on methanol and glucose as control were investigated using electron microscopy, cytochemical and biochemical methods. An ultrastructural rearrangement of the polymers in the cell wall of yeasts cultivated on methanol in comparison to those cultivated on glucose was established. The morphological changes correlate to the quantitative changes in the polysaccharide constituents of the cell wall. The forming and the role of thiosemihydrocarbazide (TSHC) — negative zones in theCandida boidinii cell wall cultivated on methanol media are discussed.  相似文献   

13.
Yeast glucan in the cyst wall of Pneumocystis carinii   总被引:9,自引:0,他引:9  
Ultrastructurally, the cyst wall of Pneumocystis carinii consists of an electron-dense outer layer, an electron-lucent middle layer, and an innermost plasmalemma. This is similar in appearance to the cell wall of some yeasts, e.g. Saccharomyces cerevisiae, which consists of an outer dense layer of mannan, a middle lucent layer of beta-1,3-glucan (yeast glucan) and an innermost plasmalemma. The cyst wall of P. carinii, as well as the cell wall of S. cerevisiae, can be labeled by a variety of methods which stain polysaccharides, such as Gomori's methenamine silver (GMS) and by Aniline blue, a dye which selectively stains beta-1,3-glucan. The treatment of P. carinii cysts with Zymolyase, which the key enzyme is beta-1,3-glucan laminaripentaohydrolase, results in lysis of the outer 2 layers of the cyst wall and the loss of positive staining by both GMS and Aniline blue. The lysis of elements of the cyst wall of P. carinii is achieved under the same conditions and concentration at which Zymolyase lyses the outer 2 layers of the cell wall of viable cells of S. cerevisiae. These observations indicate that a major component of the cyst wall of P. carinii is beta-1,3-glucan.  相似文献   

14.
The four temperature-sensitive mutants of Saccharomyces cerevisiae in the cell division cycle defective in cytokinesis (cdc, 3, 10, 11 and 12), have been analyzed with respect to the biosynthesis of the cell wall polymers. After 3 hours of incubation at the non-permissive temperature (37°C) these strains stop growing. The synthesis of glucan, mannan and chitin (wall polymers) level off in a similar time, but glucan, mannan and chitin synthases remained active for at least 4 hours.If the mutants are analyzed by transmission and scanning electron microscopy different pictures emerge. Two of the mutants cdc 10 and cdc 12, after 3 hours of incubation at 37°C present apparently normal cytoplasms and cell wall surfaces with multiple elongated buds. The other two mutants, cdc 3 and cdc 11, present a completely disarranged cytoplasmic content and damage at the level of the plasma membrane is evident.These and other observations, suggest that between the execution points of cdc 3 (0.27) and cdc 10 (0.58), essential processes in the assembly of cell membrane occur.This work was supported in part by a grant from la Comisión de Investigación Científica y Técnica of the Spanish Ministerio de Educación y Ciencia (Project no. 4593-1980).  相似文献   

15.
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.  相似文献   

16.
A rough-colony mutant of Candida albicans was isolated after ultraviolet mutagenesis. The mutant contained approximately half the normal amount of the cell wall mannan, the acetolysis pattern of which was indistinguishable from that of the wild-type counterpart. However, the extent of phosphorylation in the mutant mannan was about 12% of the value for wild type.  相似文献   

17.
In order to determine the structure of the fibrillar cell wall, the material isolated from cystocarpic thalli of the red seaweed Iridaea undulosa was fractionated using different media. While classical methods produced a scarce solubilization of material, the use of lithium salts in polar aprotic solvents (dimethylsulfoxide or N, N-dimethylacetamide), had successfully extracted higher amounts of material. The final residue from the Li(+)/DMSO extraction contains cellulose and a mannan, while that from the Li(+)/DMAc extraction contains only cellulose and traces of a galactan. Methylation analyses of both residues confirm the presence of those polysaccharides, and shows that the mannan is (1-->4)-linked. Treatment with proteases suggests that the protein is efficiently shielded from digestion. All the extracts and residues contain major amounts of (glyco)proteins and/or proteins, in agreement with a previous suggestion that they are of major importance in the structure of the cell wall.  相似文献   

18.
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a gene-reconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acid-stable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of beta-eliminated (O-linked), acid-hydrolyzed (acid-labile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the beta-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus.  相似文献   

19.
细胞壁是酵母细胞区别于哺乳动物细胞的重要特征结构。酵母细胞壁的结构组成、合成、再生等与酵母自身繁殖及环境胁迫压力密切相关。目前,酵母孢子壁的形成机理、调控过程机制及孢子壁合成相关基因的功能尚未研究清楚。本文以酿酒酵母为例,简要描述酵母孢子壁的形成过程,重点阐述孢子壁甘露糖层、葡聚糖层、壳聚糖层和二酪氨酸层的结构组成及其合成相关基因的国内外研究进展,以期为抗真菌药物的新靶点研究提供参考。  相似文献   

20.
The incorporation of 2-deoxy-d-glucose into cell wall mannan of growing Saccharomyces cerevisiae proceeded continuously during culture growth and followed the cell multiplication. About 10% of mannan labelled with deoxyglucose was concurrently released into the medium. The distribution of deoxyglucose between the side-chains and the main chain of mannan has been established. Approximately 90% of deoxyglucose present in the polysaccharide was bound in the side-chains and only 10% was located in the (1 å 6)-linked main chain. This result suggested that deoxyglucose metabolites serving as glycosyl donors in mannan biosynthesis were much worse substrates for the enzyme(s) responsible for the formation of the main chain of the polysaccharide than for the mannosyl transferases involved in the formation of the mannan side-chains. Degradation of deoxyglucose-containing mannan by α-mannosidase of Arthrobacter GJM-1 stopped at the deoxyglucosyl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号