首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lack of initial stability of the fixation is associated with aseptic loosening of the tibial components of cementless knee prostheses. With sufficient stability after surgery, minimal relative motion between the prosthesis and bone interfaces allows osseointegation to occur thereby providing a strong prosthesis-to-bone biological attachment. Finite element modelling was used to investigate the bone–prosthesis interface micromotion and the relative risk of aseptic loosening. It was anticipated that by prescribing different joint loads representing gait and other activities, and the consideration of varying tibial–femoral contact points during knee flexion, it would influence the computational prediction of the interface micromotion. In this study, three-dimensional finite element models were set up with applied loads representing walking and stair climbing, and the relative micromotions were predicted. These results were correlated to in-vitro measurements and to the results of prior retrieval studies. Two load conditions, (i) a generic vertical joint load of 3×body weight with 70%/30% M/L load share and antero-posterior/medial-lateral shear forces, acted at the centres of the medial and lateral compartments of the tibial tray, and (ii) a peak vertical joint load at 25% of the stair climbing cycle with corresponding antero-posterior shear force applied at the tibial–femoral contact points of the specific knee flexion angle, were found to generate interface micromotion responses which corresponded to in-vivo observations. The study also found that different loads altered the interface micromotion predicted, so caution is needed when comparing the fixation performance of various reported cementless tibial prosthetic designs if each design was evaluated with a different loading condition.  相似文献   

2.
A 3D knee model was developed in order to evaluate the mechanical behaviour during flexion of condylar-type knee prosthesis. Based on the total energy minimization principle, it takes into account the articular surfaces (the tibial surface being deformable), the body weight, and the patello femoral joint. It generates the kinematics of the joint, the motion of the centre of contact, the quadriceps forces, the pressure distribution on the tibial plateau, and ligament lengths and forces between 0 and 120 degrees of flexion. The results for ten digitized knees and the commercially available prostheses are presented. They are in general agreement with experimental results published in the literature. It is concluded that this computer program may be, within its limitations, a useful tool in the preliminary evaluation of new condylar-type knee prosthesis designs.  相似文献   

3.
Compression of the leg induces bending in the tibia, which can lead to tensile failure of the bone in the midshaft. The purpose of this study was to determine the orientation of the compressive load vector in the human tibia. Five cadaveric lower extremities were instrumented with in situ 6-axis tibial and fibular load cells and subjected to quasistatic axial leg compression tests in two knee positions and nine ankle positions. For each test, the location and angle of the line of action were calculated at the tibial midshaft. The line of action was extended to the bone ends in order to determine the locations of the effective centers of pressure on the tibial plafond and tibial plateau. The effective center of pressure on the tibial plafond consistently migrated anteriorly in dorsiflexion, laterally in eversion, posteriorly in plantarflexion, and medially in inversion. An opposite pattern was observed on the tibial plateau. When the knee was flexed, the effective center of pressure was generally isolated to a small area in the posterior portion of the medial tibial condyle. The percentage of the axial load borne by the fibula varied from -8% to 19%, and was related to the inversion/eversion angle of the ankle (p<0.02), as well as the distance between the fibula and the axial load path at the midshaft (p<0.001). The line of action through the tibia appeared to follow the external load path to the extent allowed by the available joint contact surfaces.  相似文献   

4.
目的:探讨锁定钢板内固定治疗复杂胫骨平台骨折的临床疗效。方法:选择2011年2月~2013年2月期间我院收治的复杂胫骨平台骨折92例,按照数字随机法分为观察组(50例)和对照组(42例)。观察组采用锁定钢板内固定治疗;对照组采用传统钢板固定治疗,所有患者术后随访1年以上,观察两组患者临床疗效。结果:①两组患者均顺利完成手术,观察组住院时间、骨折愈合时间和完全负重时间显著低于对照组(P0.05)。②治疗后两组患者胫骨平台后倾角(Posterior tibial angle,PA)、膝关节活动度逐渐升高,内翻角(Tibial plateau angle,TPA)逐渐降低(P0.05),治疗6、12个月观察组PA、膝关节活动度显著高于对照组,TPA显著低于对照组(P0.05)。③所有患者术后随访1年,均获得满意随访。观察组膝总有效率为86.0%;对照组总有效率为66.7%,观察组膝关节总有效率显著高于对照组(P0.05)。结论:锁定钢板内固定治疗复杂胫骨平台骨折具有固定牢靠,骨折愈合时间短,愈合率高等特点,其临床效果较好。  相似文献   

5.
The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750 N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100 N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior.  相似文献   

6.
目的:分析8例III度膝关节内侧副韧带损伤的患者行缝合锚重建术后异位骨化发生与损伤的关系。方法:回顾性收集8例Ⅲ度膝关节内侧副韧带损伤行缝合锚重建术后发生异位骨化的患者,对其临床一般资料、损伤程度及部位、膝关节活动度及异位骨化程度等进行分析。结果:8位中Ⅰ度异位骨化4例,膝关节活动度73.75°~176.25°,平均125°,Ⅱ°异位骨化4例,膝关节活动度78.75°~157.25°,平均117.4°。在发生内侧副韧带异位骨化的8名患者中,仅有1名为单纯内侧副韧带损伤导致,其余7名患者中5名合并前叉或前、后叉韧带损伤,1例伴有胫骨髁间棘的撕脱骨折,1例合并胫骨平台骨折,4例合并胫骨或股骨髁骨折。结论:膝关节内侧异位骨化是异位骨化的好发部位,其发生与膝关节多发韧带损伤有关。  相似文献   

7.
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70° flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8°. There was a moderate linear relationship (Y=0.16X; R2=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior–posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.  相似文献   

8.
Mathematical models of small animals that predict in vivo forces acting on the lower extremities are critical for studies of musculoskeletal biomechanics and diseases. Rabbits are advantageous in this regard because they remodel their cortical bone similar to humans. Here, we enhance a recent mathematical model of the rabbit knee joint to include the loading behavior of individual muscles, ligaments, and joint contact at the knee and ankle during the stance phase of hopping. Geometric data from the hindlimbs of three adult New Zealand white rabbits, combined with previously reported intersegmental forces and moments, were used as inputs to the model. Muscle, ligament, and joint contact forces were computed using optimization techniques assuming that muscle endurance is maximized and ligament strain energy resists tibial shear force along an inclined plateau. Peak forces developed by the quadriceps and gastrocnemius muscle groups and by compressive knee contact were within the range of theoretical and in vivo predictions. Although a minimal force was carried by the anterior cruciate and medial collateral ligaments, force patterns in the posterior cruciate ligament were consistent with in vivo tibial displacement patterns during hopping in rabbits. Overall, our predictions compare favorably with theoretical estimates and in vivo measurements in rabbits, and enhance previous models by providing individual muscle, ligament, and joint contact information to predict in vivo forces acting on the lower extremities in rabbits.  相似文献   

9.
Periprosthetic bone resorption after tibial prosthesis implantation remains a concern for long-term fixation performance. The fixation techniques may inherently aggravate the "stress-shielding" effect of the implant, leading to weakened bone foundation. In this study, two cemented tibial fixation cases (fully cemented and hybrid cementing with cement applied under the tibial tray leaving the stem uncemented) and three cementless cases relying on bony ingrowth (no, partial and fully ingrown) were modelled using the finite element method with a strain-adaptive remodelling theory incorporated to predict the change in the bone apparent density after prosthesis implantation. When the models were loaded with physiological knee joint loads, the predicted patterns of bone resorption correlated well with reported densitometry results. The modelling results showed that the firm anchorage fixation formed between the prosthesis and the bone for the fully cemented and fully ingrown cases greatly increased the amount of proximal bone resorption. Bone resorption in tibial fixations with a less secure anchorage (hybrid cementing, partial and no ingrowth) occurred at almost half the rate of the changes around the fixations with a firm anchorage. The results suggested that the hybrid cementing fixation or the cementless fixation with partial bony ingrowth (into the porous-coated prosthesis surface) is preferred for preserving proximal tibial bone stock, which should help to maintain post-operative fixation stability. Specifically, the hybrid cementing fixation induced the least amount of bone resorption.  相似文献   

10.
All hip replacement prostheses alter the load transfer from the hip joint into the femur by changing the mechanical loading of the proximal femur from an externally to an internally loaded system. This alteration of the load transfer causes stress shielding and might lead to severe bone loss, especially with uncemented prostheses. To minimize these effects, load transfer to the femur should occur as proximal as possible. In order to support sufficient primary stability, however, directly post operative (PO) distal stabilization is reasonable. Consequently, the prostheses have to alter its mechanical characteristics after implantation. This concept is referred to as load-shift concept. Primary stability during the early PO state is provided by a prosthesis shaft, which is widened at the tip by a biodegradable pin. After resorption of the pin load transfer occurs no longer distally. The objective of this study was the numerical evaluation of the load-shift concept. The analysis was performed with a finite element model. Three-dimensional non-linear dynamic gait analyses data were used to evaluate whether the load transfer during walking can be altered effectively by insertion and resorption of a distal pin. Directly PO 38% of the transverse load is transferred through the prosthesis shaft and micromotion of the proximal prostheses tip is below 55 microm. After resorption of the pin, no transverse loads are transferred through the prosthesis shaft. Therefore, the loading of the proximal bone tissue is far more pronounced than in the case of a standard prosthesis, demonstrating the feasibility of the load-shift concept. A balanced degradation of the pin simultaneously with the ingrowth of the prosthesis is expected to reduce hip replacement complications.  相似文献   

11.
By generalizing a previous model proposed in the literature, a new spatial kinematic model of the knee joint passive motion is presented. The model is based on an equivalent spatial parallel mechanism which relies upon the assumption that fibers within the anterior cruciate ligament (ACL), the medial collateral ligament (MCL) and the posterior cruciate ligament (PCL) can be considered as isometric during the knee flexion in passive motion (virtually unloaded motion). The articular surfaces of femoral and tibial condyles are modelled as 3-D surfaces of general shapes. In particular, the paper presents the closure equations of the new mechanism both for surfaces represented by means of scalar equations that have the Cartesian coordinates of the points of the surface as variables and for surfaces represented in parametric form. An example of simulation is presented in the case both femoral condyles are modelled as ellipsoidal surfaces and tibial condyles as spherical surfaces. The results of the simulation are compared to those of the previous models and to measurements. The comparison confirms the expectation that a better approximation of the tibiofemoral condyle surfaces leads to a more accurate model of the knee passive motion.  相似文献   

12.
Twenty-three knees were sectioned, digitized, and standardized to determine the 'average' three-dimensional bony geometry and ligamentous attachments. Data on normal knee motion were obtained from a cadaveric study. An algorithm was written to simulate three-dimensional patella motion. Verification of the knee model was achieved by determining femoro-tibial and patello-femoral contact locations, as well as ligament length patterns, and comparing the results with published data. The criterion for maximum predicted knee motion with a prosthesis in place was the length of the posterior cruciate ligament. Three total knee replacement surfaces were mathematically generated: flat, laxity and conforming. A greater flexion angle was obtained with a flat tibial surface than for the laxity or conforming. Posterior tibial component displacement increased the range of motion, but only slightly. For all tibial surfaces, increased range of motion was achieved with a 10 degrees posterior tilt of the tibial tray. Anterior femoral component displacement increased motion due to reduction in posterior cruciate tension during flexion. The results are applicable to the design and surgical technique of total knee replacement.  相似文献   

13.
Although adequate reduction and stable fixation have been recognized to be the prime goals in the treatment of displaced tibial plateau fractures, the optimal fixation technique remains controversial. The lack of a reliable model and a standard methodology contribute to this situation. The purpose of this study is to develop an experimental model of a tibial plateau fracture and a testing methodology that reproduces the failure mode commonly seen in the clinical setting. Using solid-foam and composite Sawbones tibiae, three different models of bi-condylar tibial plateau fracture (solid-foam, reinforced solid-foam and composite), six specimens for each model, were created and stabilized with double plating. The specimens were subjected to cyclic axial compression with increasing maximum load until failure. A femoral component of a total knee replacement of similar size and shape to the synthetic tibial surface was used as a load applicator. The experiment was repeated on six specimens of human cadaver tibiae. Among the Sawbones specimens, only the reinforced solid-foam model was found to produce a consistent failure mode (collapse in the medial plateau) comparable to that reported clinically in the literature. This mode of failure was also confirmed by the cadaver experiments. The failure load of the reinforced solid-foam model ranged from 4150 to 4260 N with a mean +/- SD of 4201 +/- 44 N and a coefficient of variance of 0.01, whereas for the cadaver model the failure load ranged from 1675 to 6096 N with a mean +/- SD of 3768 +/- 1482 N and a coefficient of variance of 0.39. We recommend the reinforced-foam model for future mechanical tests to compare different fixation methods for tibial plateau fractures.  相似文献   

14.
Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints.
Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated.
Results:  Rapid prototyping of 3DF architectures with 100% interconnecting pores promoted homogeneous distribution of viable cells, glycosaminoglycan (GAG) and collagen type II; significantly greater GAG content and differentiation capacity (GAG/DNA) in vitro compared to CM architectures; and higher mechanical equilibrium modulus and dynamic stiffness (at 0.1 Hz). Six weeks after implantation, femoral and tibial constructs had integrated with rabbit bone and knee flexion/extension and partial load bearing were regained. Histology demonstrated articulating surfaces between femoral and tibial constructs for CM and 3DF architectures; however, repair tissue appeared fibrocartilage-like and did not resemble implanted cartilage.
Conclusions:  Anatomically shaped, tissue-engineered constructs with designed mechanical properties and internal pore architectures may offer alternatives for reconstruction or restoration of congruent articulating surfaces in small joints.  相似文献   

15.
AIM: Common total knee arthroplasty leads to resection of the anterior cruciate ligament. Lacking the ligamentous guidance, tibial rotation depends on different factors, i.e., muscle vectors. The present study measured the influence of the knee extensor mechanism determined by the mediolateral patella position on tibial rotation after implantation of two different knee prostheses. MATERIALS AND METHODS: Physiologic tibial rotation and mediolateral patella translation were measured in ten fresh-frozen knee specimens. After implantation of the Interax- and Genesis II-prosthesis in each five of the ten specimens, kinematic measurements were made again with a determination of significant alterations. RESULTS: The maximal medial patella position relative to the centre of the tibia was -6.6 mm (representing lateralisation); the maximal external tibial rotation was 4.1 degrees. After implantation of the Genesis II-prosthesis the external tibial rotation was reduced (p=0.03) with a relatively medialised patella (p=0.01), whereas after implantation of the Interax-prosthesis the external tibial rotation was increased (p=0.01) while the patella was measured to be lateralised similar to physiologic conditions. CONCLUSION: The results of the current study revealed a potential influence of mediolateral patella position on tibial rotation following total knee arthroplasty, while both prosthesis systems were not able to reproduce physiologic joint kinematics.  相似文献   

16.
A two-dimensional, finite element study was undertaken to establish the stresses in the proximal tibia before and after total knee arthroplasty. Equivalent-thickness models in a sagittal plane were created for the natural, proximal tibia and for the proximal tibia with two different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Two load cases were considered: a joint reaction force acting in conjunction with a patellar ligament force, simulating the knee at 40 degrees of flexion; and a joint reaction force directed along the long axis of the tibia. For the natural tibia model, the pattern of principal stresses for loadcase 1 more closely corresponds to the epiphyseal plate geometry and trabecular morphology than do the principal stress patterns for loadcase 2. Judging from the distribution of principal stresses, loadcase 1 represents a more severe test of implant design than does loadcase 2. The model of the component with a peg predicted that the trabecular bone near the tip of the peg will experience higher than normal stresses, while the bone stresses near the posterior aspect adjacent to the metal tray will be reduced. A component without pegs that incorporates a posterior chamfer and an anterior lip lead to stress distributions closer to those existing in the natural tibia. The interface geometry for this design is based upon the contour of the epiphyseal plate.  相似文献   

17.
摘要 目的:探讨倒"L"入路治疗胫骨平台后柱骨折的疗效、安全性及对膝关节功能的影响。方法:纳入2015年8月至2019年12月在我院骨科接受手术治疗的88例闭合性胫骨平台后柱骨折患者,随机平均分为观察组和对照组各44例。观察组采用倒"L"入路术式进行切开复位内固定治疗,对照组采用常规手术入路进行内固定治疗。比较两组患者手术时间、术中出血量、术后住院时间、骨折愈合时间、延迟愈合比例。比较两组患者膝关节功能及并发症情况。结果:观察组手术时间短于对照组(P<0.05),两组患者术中出血量、术后住院时间比较无统计学意义(P>0.05)。两组患者在愈合时间、延迟愈合比例方面比较无统计学差异(P>0.05)。观察组膝关节HSS评分、Lysholm评分及IKDC评分均高于对照组,差异具有统计学意义(P<0.05)。两组术后并发症发生率比较差异无统计学意义(P>0.05)。结论:对于胫骨平台后柱骨折的患者,采用倒"L"入路是一种新型的可靠入路方式,与传统术式相比,其对膝关节功能改善更佳,安全可靠。  相似文献   

18.
It has been suggested that the repetitive nature of altered joint tissue loading which occurs after anterior cruciate ligament (ACL) rupture can contribute to the development of osteoarthritis (OA). However, changes in dynamic knee joint contact stresses after ACL rupture have not been quantified for activities of daily living. Our objective was to characterize changes in dynamic contact stress profiles that occur across the tibial plateau immediately after ACL transection. By subjecting sensor-augmented cadaveric knees to simulated gait, and analyzing the resulting contact stress profiles using a normalized cross-correlation algorithm, we tested the hypothesis that common changes in dynamic contact stress profiles exist after ACL injury. Three common profiles were identified in intact knees, occurring on the: (I) posterior lateral plateau, (II) posterior medial plateau, and (III) central region of the medial plateau. In ACL-transected knees, the magnitude and shape of the common dynamic stress profiles did not change, but their locations on the tibial plateau and the number of knees identified for each profile changed. Furthermore, in the ACL transected knees, a unique common contact stress profile was identified in the posterior region of the lateral plateau near the tibial spine. This framework can be used to understand the regional and temporal changes in joint mechanics after injury.  相似文献   

19.
目的:探讨膝关节镜辅助微创手术治疗复杂性胫骨平台骨折的疗效。方法:搜集2013年2月-2015年1月期间我院收治的确诊为复杂性胫骨平台骨折患者104例,按照随机数字表法分为微创组和对照组,每组各52例。对照组采用传统切开复位钢板内固定术治疗,微创组采用膝关节镜辅助微创手术治疗;观察两组患者临床各项指标、膝关节功能HSS评分以及术后并发症发生率。结果:术后微创组下床活动时间、完全负重下地时间和骨折愈合时间显著低于对照组(P0.05);三个月后的关节活动度、一年后的膝关节功能优良率显著高于对照组(P0.05);术后微创组并发症发生率为9.62%(5/52),显著低于对照组的23.08%(12/52),差异具有统计学意义(P0.05)。结论:膝关节镜辅助微创手术治疗复杂性胫骨平台骨折,临床疗效显著,术后膝关节功能恢复好,并发症发生率低,值得临床推广应用。  相似文献   

20.
Bone is integral to the pathogenesis of osteoarthritis (OA). Whether the bone area of the tibial plateau changes over time in subjects with knee OA is unknown. We performed a cohort study to describe this and identify factors that might influence the change. One hundred and twenty-six subjects with knee OA underwent baseline knee radiography and magnetic resonance imaging on their symptomatic knee. They were followed up with a repeatmagnetic resonance image of the same knee approximately 2 years later. The bone area of the tibial plateau was measured at baseline and follow-up. Risk factors assessed at baseline were tested for their association with change in tibial plateau bone area over time. One hundred and seventeen subjects completed the study. The medial and lateral tibial plateau bone areas increased by 2.2 ± 6.9% and 1.5 ± 4.3% per year, respectively. Being male (P = 0.001), having a higher body mass index (P = 0.002), and having a higher baseline grade of medial joint-space narrowing (P = 0.01) were all independently and positively associated with an increased rate of enlargement of bone area of the medial tibial plateau. A larger baseline bone area of the medial tibial plateau was inversely associated with the rate of increase of that area (P < 0.001). No factor examined affected the rate of increase of the bone area of the lateral tibial plateau. In subjects with established knee OA, tibial plateau bone area increases over time. The role of subchondral bone change in the pathogenesis of knee OA will need to be determined but may be one explanation for the mechanism of action of risk factors such as body mass index on knee OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号