首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory studies were conducted on the mating behavior of Rhabditis pellio males and females, which were maintained on a culture of Flavobacterium sp. bacteria isolated from earthworms. The mean time that elapsed between first contact of the sexes and their ultimate separation was 23.2 min. However, only 5.0 min were required for copulation (the interval during which male spicules were inserted into the female vagina). Three-day-old females that were permitted to mate once on their first day of adult life produced only one-third as many larvae as did females that were permitted unlimited mating. However, the longevity of females was found to decrease with an increase in the number of matings. Both males and females that were permitted to mate daily produced the greatest number of offspring when they were 4 days old. When the initiation of mating was delayed beyond their third day of life, the number of larvae produced by females decreased. In approximately one-half of the copulations, males failed to inseminate their female partners.  相似文献   

2.
Sexually antagonistic selection generates intralocus sexual conflict, an evolutionary tug-of-war between males and females over optimal trait values [1-4]. Although the potential for this conflict is universal, the evolutionary importance of intralocus conflict is controversial because conflicts are typically thought to be resolvable through the evolution of sex-specific trait development [1-8]. However, whether sex-specific trait expression always resolves intralocus conflict has not been established. We assessed this with beetle populations subjected to bidirectional selection on an exaggerated sexually selected trait, the mandible. Mandibles are only ever developed in males for use in male-male combat, and larger mandibles increase male fitness (fighting [9, 10] and mating success, as we show here). We find that females from populations selected for larger male mandibles have lower fitness, whereas females in small-mandible populations have highest fitness, even though females never develop exaggerated mandibles. This is because mandible development changes genetically correlated characters, resulting in a negative intersexual fitness correlation across these populations, which is the unmistakable signature of intralocus sexual conflict [1]. Our results show that sex-limited trait development need not resolve intralocus sexual conflict, because traits are rarely, if ever, genetically independent of other characters [11]. Hence, intralocus conflict resolution is not as easy as currently thought.  相似文献   

3.
一种泡蟾的配偶识别:脑、行为和进化研究   总被引:4,自引:0,他引:4  
综述了对泡蟾(Physalaemuspus pustulosus)的性通讯所进行的各种研究。本文作者研究了通讯系统的功能重要性、通讯的神经机制以及通讯进化的格局,特别研究了雌蛙如何使用简单和复杂的叫声来识别可以交配的物种,以及如何识别同种的不同雄性个体。本文确定了复杂叫声的反选择力、一种食蛙蝠——缨唇蝠(Trachops cirrhosus)以及叫声的能量消耗,并阐述了引起雌性反应的重要特征。作者的比较研究表明,对复杂叫声的偏好在复杂叫声进化前就有了,这支持感官开发假说(Hypothesis of sensory exploitation,雄性特征进化的结果是开发雌性预先存在的对雄性的偏好)。结合比较研究和人工神经网络的模拟,作者认为雌蛙用来识别雄性简单叫声的解码策略受其祖先解码策略的影响[动物学报49(6):713~726,2003]。  相似文献   

4.
Sex is determined by chromosomes in mammals but it can be influenced by the environment in many worms, crustaceans, and vertebrates. Despite this, there is little understanding of the relationship between ecology and the evolution of sexual systems. The nematode Auanema freiburgensis has a unique sex determination system in which individuals carrying one X chromosome develop into males while XX individuals develop into females in stress-free environments and self-fertile hermaphrodites in stressful environments. Theory predicts that trioecious populations with coexisting males, females, and hermaphrodites should be unstable intermediates in evolutionary transitions between mating systems. In this article, we study a mathematical model of reproductive evolution based on the unique life history and sex determination of A. freiburgensis. We develop the model in two scenarios, one where the relative production of hermaphrodites and females is entirely dependent on the environment and one based on empirical measurements of a population that displays incomplete, “leaky” environmental dependence. In the first scenario environmental conditions can push the population along an evolutionary continuum and result in the stable maintenance of multiple reproductive systems. The second “leaky” scenario results in the maintenance of three sexes for all environmental conditions. Theoretical investigations of reproductive system transitions have focused on the evolutionary costs and benefits of sex. Here, we show that the flexible sex determination system of A. freiburgensis may contribute to population-level resilience in the microscopic nematode's patchy, ephemeral natural habitat. Our results demonstrate that life history, ecology, and environment may play defining roles in the evolution of sexual systems.  相似文献   

5.
The nematode species Rhabditis sp. SB347 (Family Rhabditidae) in standard culture conditions displays two developmental morphs with distinct modes of sexual reproduction: (1) females and males that develop through four feeding juvenile (larval) stages; (2) self-fertile protandric hermaphrodites that develop through an obligatory non-feeding third juvenile stage, the dauer larva. In females and males, somatic gonad development begins in the first larval stage, whereas in hermaphrodites it is delayed to the second larval stage. Vulval development also differs between females and hermaphrodites: (1) the P8.p cell divides in females but stays undivided in hermaphrodites; (2) the number, timing, and source of inductive signals from the gonad to the vulval precursor cells differ between the two morphs. These results show that discrete vulva developmental routes can be adopted by animals of the same genotype.Edited by D. Tautz  相似文献   

6.
The tumour suppressor gene PTEN (also called MMAC1 or TEP1) is somatically mutated in a variety of cancer types [1] [2] [3] [4]. In addition, germline mutation of PTEN is responsible for two dominantly inherited, related cancer syndromes called Cowden disease and Bannayan-Ruvalcaba-Riley syndrome [4]. PTEN encodes a dual-specificity phosphatase that inhibits cell spreading and migration partly by inhibiting integrin-mediated signalling [5] [6] [7]. Furthermore, PTEN regulates the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) by specifically dephosphorylating position 3 on the inositol ring [8]. We report here that the dauer formation gene daf-18 is the Caenorhabditis elegans homologue of PTEN. DAF-18 is a component of the insulin-like signalling pathway controlling entry into diapause and adult longevity that is regulated by the DAF-2 receptor tyrosine kinase and the AGE-1 PI 3-kinase [9]. Others have shown that mutation of daf-18 suppresses the life extension and constitutive dauer formation associated with daf-2 or age-1 mutants. Similarly, we show that inactivation of daf-18 by RNA-mediated interference mimics this suppression, and that a wild-type daf-18 transgene rescues the dauer defect. These results indicate that PTEN/daf-18 antagonizes the DAF-2-AGE-1 pathway, perhaps by catalyzing dephosphorylation of the PIP3 generated by AGE-1. These data further support the notion that mutations of PTEN contribute to the development of human neoplasia through an aberrant activation of the PI 3-kinase signalling cascade.  相似文献   

7.
Dispersal is a life‐history trait that can evolve under various known selective pressures as identified by a multitude of theoretical and empirical studies. Yet only few of them are considering the succession of mating and dispersal. The sequence of these events influences gene flow and consequently affects the dynamics and evolution of populations. We use individual‐based simulations to investigate the evolution of the timing of dispersal and mating, i.e. mating before or after dispersal. We assume a discrete insect metapopulation in a heterogeneous environment, where populations may adapt to local conditions and only females are allowed to disperse. We run the model assuming different levels of species habitat tolerance, carrying capacity, and temporal environmental variability. Our results show that in species with narrow habitat tolerance, low to moderate dispersal evolves in combination with mating after dispersal (post‐dispersal mating). With such a strategy dispersing females benefit from mating with a resident male, as their offspring will be better adapted to the local habitat conditions. On the contrary, in species with wide habitat tolerance higher dispersal rates in combination with pre‐dispersal mating evolves. In this case individuals are adapted to the ‘average’ habitat where pre‐dispersal mating conveys the benefit of carrying relatives’ genes into a new population. With high dispersal rates and large population size, local adaptation and kin structure both vanish and the temporal sequence of dispersal and mating may become a (nearly) neutral trait.  相似文献   

8.
Ungulates exhibit diverse mating systems that range from monogamous pair territories to highly polygynous leks. We review mating systems and behaviors across ungulates and offer a new approach synthesizing how interacting factors may shape those mating systems. Variability exists in mating systems among and within species of ungulates and likely is affected by predation risk, availability of resources (food and mates), habitat structure, and sociality. Ungulate mating systems may be labile as a consequence of the varying strength of those interacting factors. In addition, degree of polygyny and sexual dimorphism in size are associated with the evolution of mating systems. Neither male–male combat nor paternal care, however, can completely explain differences in sexual size dimorphism for ungulates, a necessary component in understanding the development of some mating systems. Whatever the evolutionary pathway, sexual segregation limits paternal care allowing more intense male–male competition. Selection of habitat structure, because it modifies risk of predation, is a major determinant of sociality for ungulates. Likewise, ruggedness and steepness of terrain limit the types of mating systems that can occur because of limitations in group size and cohesiveness, as well as the ability of males to herd even small groups of females effectively. The quality and defensibility of resources affect mating systems, as does the defensibility of females. Population density of females also may be a critical determinant of the types of mating systems that develop. Size of groups likewise constrains the types of mating tactics that males can employ. Our aim was to use those relationships to create a broad conceptual model that predicts how various environmental and social factors interact to structure mating systems in ungulates. This model provides a useful framework for future tests of the roles of both ecological and social conditions in influencing the social systems of ungulates.  相似文献   

9.
Competition for mates has substantial effects on sensory systems and often leads to the evolution of extraordinary mating behaviours in nature. The ability of males to find sexually immature females and associate with them until mating is a remarkable example. Although several aspects of such pre-copulatory mate guarding have been investigated, little is known about the mechanisms used by males to locate immature females and assess their maturity. These are not only key components of the origin and maintenance of this mating strategy, but are also necessary for inferring the level to which females cooperate and thus the incidence of sexual conflict. We investigated the cues involved in recognition of immature females in Heliconius charithonia, a butterfly that exhibits mate guarding by perching on pupae. We found that males recognized female pupae using sex-specific volatile monoterpenes produced by them towards the end of pupal development. Considering the presumed biosynthetic pathways of such compounds and the reproductive biology of Heliconius, we propose that these monoterpenes are coevolved signals and not just sex-specific cues exploited by males. Their maintenance, despite lack of female mate choice, may be explained by variation in cost that females pay with this male behaviour under heterogeneous ecological conditions.  相似文献   

10.
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward — females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term ‘good gene’ be used exclusively to refer to additive genetic variation in fitness, ‘compatible gene’ be used to refer to nonadditive genetic variation in fitness, and ‘genetic quality’ be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.  相似文献   

11.
Testes weight, body weight and mating systems in marsupials and monotremes   总被引:2,自引:0,他引:2  
Relationships between testes weight, body weight and mating systems were examined in 40 marsupial species and in the extant monotremes. Relationships between relative testes weight and mating systems in marsupials resemble those previously described for primates. Thus relative testes weights are greatest in those marsupials where females mate with multiple males during the fertile period, i.e. polyandrous species (e.g. Antechinus ftavipes, Isoodon obesulus, Perameles nasuta, Potorous tridactylus, Macropus eugenii and M. agilis) and smallest in monandrous forms (e.g. Petauroides volans and Petaurus breviceps ) where females usually mate with a single male. These findings are consistent with effects of sperm competition upon the evolution of relative testes sizes in marsupials. Where field studies on marsupial mating systems are lacking, we make predictions based upon examination of their relative testes weights. Tarsipes rostratus, Acrobates pygmaeus, Macropus rufogriseus and Sarcophilus harrisii are predicted to engage in multiple matings and sperm competition. Conversely, Lasiorhinus latifrons, Cercatetus concinnus and Pseudoantechinus macdonnellensis are predicted to be monandrous in their mating behaviour. The monotremes ( Ornithorhynchus anatinus, Tachyglossus aculeatus and Zaglossus bruijnii ) are characterized by possession of very large testes; monotremes are shown to have significantly greater relative testes weights than marsupials, primates or avian species. This taxonomic difference is unlikely to be related lo the occurrence of oviparity or to the abdominal position of the testes in the Monotremata. Their mating systems are not known in detail, but some evidence for multiple matings (and hence for sperm competition) exists for Tachyglossus aculeatus so that their large testes may be adaptive in this context.  相似文献   

12.
Interactions with parasites may promote the evolution of disassortative mating in host populations as a mechanism through which genetically diverse offspring can be produced. This possibility has been confirmed through simulation studies and suggested for some empirical systems in which disassortative mating by disease resistance genotype has been documented. The generality of this phenomenon is unclear, however, because existing theory has considered only a subset of possible genetic and mating scenarios. Here we present results from analytical models that consider a broader range of genetic and mating scenarios and allow the evolution of non-random mating in the parasite as well. Our results confirm results of previous simulation studies, demonstrating that coevolutionary interactions with parasites can indeed lead to the evolution of host disassortative mating. However, our results also show that the conditions under which this occurs are significantly more fickle than previously thought, requiring specific forms of infection genetics and modes of non-random mating that do not generate substantial sexual selection. In cases where such conditions are not met, hosts may evolve random or assortative mating. Our analyses also reveal that coevolutionary interactions with hosts cause the evolution of non-random mating in parasites as well. In some cases, particularly those where mating occurs within groups, we find that assortative mating evolves sufficiently to catalyze sympatric speciation in the interacting species.  相似文献   

13.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

14.
The evolution of animal communication systems is an integral part of speciation. In moths, species specificity of the communication channel is largely a result of unique sex pheromone blends produced by females and corresponding specificity of male behavioral response. Insights into the process of speciation may result from studies of pheromone strains within a species in which reproductive isolation is not complete. Toward this end we investigated assortative mating based on female pheromone phenotypes and male response specificity between mutant and normal colonies of the cabbage looper moth, Trichoplusia ni. There was no evidence of assortative mating in small cages in which the density of moths was high. In larger cages with lower densities of moths, assortative mating was evident. In these larger cages, matings between normal males and normal females and mutant males and mutant females were more frequent than interstrain matings. Wind tunnel tests indicated that normal males responded preferentially to pheromone released by normal females, whereas mutant males did not discriminate between normal and mutant pheromone blends. In large field cages, pheromone traps baited with normal females caught equal numbers of mutant and normal males, while pheromone traps baited with mutant females caught primarily mutant males. The overall pattern of assortative mating could be explained primarily based on the normal males' preference for the pheromone blend released by normal females.  相似文献   

15.
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.  相似文献   

16.
In the beetle Diaprepes abbreviatus (L.) females are larger on average than males, as indicated by elytra length. Size-assortative matings were observed in wild populations in Florida and in laboratory mating experiments. We tested three mechanisms for this size-assortative mating: (1) mate availability; (2) mating constraints; and (3) mate choice. We found that mate choice influenced size-assortative mating by: (1) large and small males preferring to mate with large females; (2) large males successfully competing for large females, leaving small males to mate with small females; and (3) females accepting large males as mates more readily than small males. Males increased their reproductive success by mating with larger, more fecund females. They transferred protein to females during mating. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

17.
How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin.  相似文献   

18.
Crustaceans are known for their unrivalled diversity of sexual systems, as well as peculiar mating associations to achieve maximum mating success and fertilization accomplishment. Although sexes are separate in most species, various types of hermaphroditism characterize these predominantly aquatic arthropods. A low operational sex ratio between female and male, together with temporally limited receptivity of females towards males, imposes restrictions on the structuring of mating systems in crustaceans. The basic mating systems consist of monogamy, polygamy, mate guarding and pure searching. Understandably, ecological influences may also play a determinative role in the evolution of such sexual and mating systems in crustaceans. An important outcome of the crustacean sexual biology is the development of complex social structures in many aquatic species, in much the same way insects have established them in terrestrial conditions. In addition, groups like isopods and certain families of brachyuran crabs have shown terrestrial adaptation, exhibiting peculiar reproductive modes, sometimes reminiscent of their terrestrial counterparts, insects. Many caridean shrimps, living in symbiotic relationship with other marine invertebrates in the coral reef habitats, have reached pinnacle of complexity in sexuality and peculiar mating behaviours, resulting in communal living and establishing advanced social systems, such as eusociality.  相似文献   

19.
Social systems are the outcomes of natural and sexual selection on individuals' efforts to maximize reproductive success. Ecological conditions, life history, demography traits and social aspects have been recognized as important factors shaping social systems. Delphinids show a wide range of social structures and large variation in life history traits and inhabit several aquatic environments. They are therefore an excellent group in which to investigate the interplay of ecological and intrinsic factors on the evolution of mammalian social systems in these environments. Here I synthetize results from genetic studies on dispersal patterns, genetic relatedness, kin associations and mating patterns and combine with ecological, life history and phylogenetic data to predict the formation of kin associations and bonding in these animals. I show that environment type impacts upon dispersal tendencies, with small delphinids generally exhibiting female-biased philopatry in inshore waters and bisexual dispersal in coastal and pelagic waters. When female philopatry occurs, they develop moderate social bonds with related females. Male bonding occurs in species with small male-biased sexual size dimorphism and male-biased operational sex ratio, and it is independent of dispersal tendencies. By contrast, large delphinids, which live in coastal and pelagic waters, show bisexual philopatry and live in matrilineal societies. I propose that sexual conflict favoured the formation of these stable societies and in turn facilitated the development of kin-biased behaviours. Studies on populations of the same species inhabiting disparate environments, and of less related species living in similar habitats, would contribute towards a comprehensive framework for the evolution of delphinid social systems.  相似文献   

20.
Seven species of bees from the eastern United States, representing four families in the Apoidea, were dissected and examined for nematode associates. Dufour''s glands in females of Halictus ligatus, Augochlora pura mosieri, and Augochlorella gratiosa (Halictidae) from Florida were infested with dauer juveniles of Aduncospiculum halicti (Diplogasteridae). The Dufour''s glands of Colletes thoracicus (Colletidae) females from Maryland were infested with dauer juveniles of a new species of Koerneria sp. (Diplogasteridae), and abdominal glands of females of Andrena alleghaniensis (Andrenidae) from New York were infested with dauer juveniles of another new species of Koerneria. The lateral and median oviducts, Dufour''s glands, and poison sacs in females of Anthophora abrupta (Anthophoridae) from Maryland and Alabama were infested with dauer juveniles of a new species of Bursaphelenchus sp. (Aphelenchoididae). Cross sections of the nematode-infested poison sacs of A. abrupta revealed two types of humoral host defense reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号