首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.  相似文献   

2.
p53基因是抑制肿瘤形成的抑癌基因,p53通过阻断细胞周期、诱导衰老细胞凋亡和修复受损的DNA从而抑制肿瘤的形成。而突变的p53则具有相反的功能,被认为是促进细胞重编程的关键。这些发现表明p53在去分化过程中具有重要的作用,而肿瘤的形成与细胞重编程存在高度的相似性,所以探讨p53与诱导性多能干细胞(induced pluripotent stem cell,iPSC)和肿瘤形成之间的联系具有一定的意义。  相似文献   

3.
Comment on: Lee KH, et al. Proc Natl Acad Sci USA 2010; 107:69-74.  相似文献   

4.
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.  相似文献   

5.
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.  相似文献   

6.
7.
Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type.We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b.  相似文献   

8.
9.
Comment on: Freed-Pastor WA, et al. Cell 2012; 148:244-58 and Ginestier C, et al. Stem Cells 2012; 1327-37.  相似文献   

10.
Comment on: Vitale I, et al. Cell Cycle 2010; 9:2823-9.  相似文献   

11.
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism's lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53515C allele in conjunction with Mdm2, a negative regulator of p53 to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53515C/515CMdm2-/- double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.  相似文献   

12.
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism''s lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53515C allele in conjunction with Mdm2, a negative regulator of p53, to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53515C/515CMdm2−/− double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS-induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.Key words: HSC, reactive oxygen species, ROS, p53, Mdm2  相似文献   

13.
14.
Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号