首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear migration is known to require the perinuclear protein Klarsicht, but the function of Klarsicht has been obscure. Here, we show that Klarsicht is required for connecting the microtubule organizing center (MTOC) to the nucleus. In addition, in a genetic screen for klarsicht-interacting genes, we identified Lam Dm(0), which encodes nuclear lamin. We find that, like Klarsicht, lamin is required for photoreceptor nuclear migration and for nuclear attachment to the MTOC. Moreover, perinuclear localization of Klarsicht requires lamin. We propose that nuclear migration requires linkage of the MTOC to the nucleus through an interaction between microtubules, Klarsicht, and lamin. The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies.  相似文献   

2.
Human autoantibodies reactive against the tail domain exclusive to lamin A and absent from lamin C have been used for immunofluorescence studies on human fibroblast and epithelial cells. These autoantibodies were seen to react on mitotic cells where lamin A is present in a soluble depolymerized form and to react against lamin A in assembled interphase nuclear lamina after in situ extraction of chromatin. Taken together, these results support the suggestion that the tail domain of lamin A may be involved in the putative interaction of lamin A with chromatin.  相似文献   

3.
The nuclear lamina is a meshwork of intermediate-type filament proteins (lamins) that lines the inner nuclear membrane. The lamina is proposed to be an important determinant of nuclear structure, but there has been little direct testing of this idea. To investigate lamina functions, we have characterized a novel lamin B1 mutant lacking the middle approximately 4/5 of its alpha-helical rod domain. Though retaining only 10 heptads of the rod, this mutant assembles into intermediate filament-like structures in vitro. When expressed in cultured cells, it concentrates in patches at the nuclear envelope. Concurrently, endogenous lamins shift from a uniform to a patchy distribution and lose their complete colocalization, and nuclei become highly lobulated. In vitro binding studies suggest that the internal rod region is important for heterotypic associations of lamin B1, which in turn are required for proper organization of the lamina. Accompanying the changes in lamina structure induced by expression of the mutant, nuclear pore complexes and integral membrane proteins of the inner membrane cluster, principally at the patches of endogenous lamins. Considered together, these data indicate that lamins play a major role in organizing other proteins in the nuclear envelope and in determining nuclear shape.  相似文献   

4.
A monoclonal IgM has been characterised which recognises the nuclear lamins in all mammalian cells tested. In immunoblotting experiments using both one- and two-dimensional gels it recognises lamins A, B and C. The common antigenic determinant lies on a proteolytic fragment of 46,000 daltons which can be generated from each lamin polypeptide by treatment with chymotrypsin. In immunofluorescence experiments on whole cells and thin frozen sections, the antibody labelled only the nuclear envelope and not the nuclear interior. During mitosis, labelling was found dispersed throughout the cell cytoplasm. By immunoelectron microscopy using the antibody and protein A-gold, only the nucleoplasmic side of the nuclear envelope (the nuclear lamina) was labelled, but there was no labelling of the nuclear pores.  相似文献   

5.
Li M  Zheng W 《Biochemistry》2011,50(40):8645-8655
Kinesin-microtubule (MT) binding plays a critical role in facilitating and regulating the motor function of kinesins. To obtain a detailed structural and energetic picture of kinesin-MT binding, we performed large-scale computational alanine-scanning mutagenesis based on long-time molecular dynamics (MD) simulations of the kinesin-MT complex in both ADP and ATP states. First, we built three all-atom kinesin-MT models: human conventional kinesin bound to ADP and mouse KIF1A bound to ADP and ATP. Then, we performed 30 ns MD simulations followed by kinesin-MT binding free energy calculations for both the wild type and mutants obtained after substitution of each charged residue of kinesin with alanine. We found that the kinesin-MT binding free energy is dominated by van der Waals interactions and further enhanced by electrostatic interactions. The calculated mutational changes in kinesin-MT binding free energy are in excellent agreement with results of an experimental alanine-scanning study with a root-mean-square error of ~0.32 kcal/mol [Woehlke, G., et al. (1997) Cell 90, 207-216]. We identified a set of important charged residues involved in the tuning of kinesin-MT binding, which are clustered on several secondary structural elements of kinesin (including well-studied loops L7, L8, L11, and L12, helices α4, α5, and α6, and less-explored loop L2). In particular, we found several key residues that make different contributions to kinesin-MT binding in ADP and ATP states. The mutations of these residues are predicted to fine-tune the motility of kinesin by modulating the conformational transition between the ADP state and the ATP state of kinesin.  相似文献   

6.
Small-molecule fluorescent sensors that allow specific measurement of nuclear pH in living cells will be valuable for biological research. Here we report that Hoechst-tagged fluorescein (hoeFL), which we previously developed as a green fluorescent DNA-staining probe, can be used for this purpose. Upon excitation at 405 nm, the hoeFL–DNA complex displayed two fluorescence bands around 460 nm and 520 nm corresponding to the Hoechst and fluorescein fluorescence, respectively. When pH was changed from 8.3 to 5.5, the fluorescence intensity ratio (F520/F460) significantly decreased, which allowed reliable pH measurement. Moreover, because hoeFL binds specifically to the genomic DNA in cells, it was applicable to visualize the intranuclear pH of nigericin-treated and intact living human cells by ratiometric fluorescence imaging.  相似文献   

7.
Studies on stem cell are rapidly developing since these cells have great therapeutic potential for numerous diseases and has generated much promise as well as confusion due to contradictory results. Major questions in this research field have been raised as to how and in which numbers stem cells home to target tissues after administration, whether the cells engraft and differentiate, and what their long-term fate is. To answer these questions, reliable in vivo tracking techniques are essential. In vivo molecular imaging techniques using magnetic resonance imaging, bioluminescence, and scintigraphy have been applied for this purpose in experimental studies. The aim of this review is to discuss various radiolabeling techniques for early stem cell tracking, the need for validation of viability and performance of the cells after labeling, and the routes of administration in experimental animal models. In addition, we evaluate current problems and directions related to stem cell tracking using radiolabels, including a possible role for their clinical implementation.  相似文献   

8.
Primary cultures and tissue samples of chicken embryonic muscle were immunologically probed for the expression of muscle-specific proteins, such as myosin heavy chain and the tropomyosins, as well as for the nuclear lamina protein, lamin A. As determined by quantitative immunoblotting, the expression of lamin A and the muscle-specific proteins were at low levels or absent in predifferentiation myoblasts both in vitro and in ovo. During differentiation, an increase of lamin A expression preceded the induction to high levels of expression of muscle-specific proteins. Immunofluorescence staining of chicken embryonic muscle cells in culture also indicates an accumulation of lamin A before the induction of muscle-specific proteins expression. Furthermore, the accumulation of lamin A reached a plateau before the muscle-specific proteins during muscle development. In two dimensional NEPHGE gel analysis of immunoprecipitated lamin A, no detectable change in the ratio of the acidic/basic isoelectric variants of lamin A was observed during myogenesis. A potential role for lamin A in the mechanisms which underlie the differential and coordinate expression of muscle-specific genes is proposed.  相似文献   

9.
'Newborn' Escherichia coli B/r cells, obtained by membrane elution, were used to study the cell cycles of wild-type and Dam methyltransferase mutants. In wild-type cells, initiation of chromosome replication was synchronous and tightly controlled. In dam mutants, initiation was altered, but not random. We propose that this is due to the absence of an initiation cascade caused by liberated DnaA molecules, and that this cascade normally synchronizes initiation. The dam- cells contained mainly two, three or four replication origins, and this affected nucleoid partitioning as well as cell division. In cultures growing with a 50 min doubling time, a variety of cell cycles were present and half the origins were used every 25 min. Some cells had a 25 min interdivision time, whereas others had an interdivision time longer than the generation time. Partitioning of nucleoids containing unequal numbers of replication origins could also be readily observed by fluorescence microscopy in the dam mutant. Based upon these observations we propose that the dam mutant is also an initiation cascade mutant.  相似文献   

10.
11.
Background information. In a previous study, we showed that GFP (green fluorescent protein) fused to the N‐terminal 238 amino acids of the mammalian LBR (lamin B receptor) localized to the NE (nuclear envelope) when expressed in the plant Nicotiana tabacum. The protein was located in the NE during interphase and migrated with nuclear membranes during cell division. Targeting and retention of inner NE proteins requires several mechanisms: signals that direct movement through the nuclear pore complex, presence of a transmembrane domain or domains and retention by interaction with nuclear or nuclear‐membrane constituents. Results. Binding mutants of LBR—GFP were produced to investigate the mechanisms for the retention of LBR in the NE. FRAP (fluorescence recovery after photobleaching) analysis of mutant and wild‐type constructs was employed to examine the retention of LBR—GFP in the plant NE. wtLBR—GFP (wild‐type LBR—GFP) was shown to have significantly lower mobility in the NE than the lamin‐binding domain deletion mutant, which showed increased mobility in the NE and was also localized to the endoplasmic reticulum and punctate structures in some cells. Modification of the chromatin‐binding domain resulted in the localization of the protein in nuclear inclusions, in which it was immobile. Conclusions. As expression of truncated LBR—GFP in plant cells results in altered targeting and retention compared with wtLBR—GFP, we conclude that plant cells can recognize the INE (inner NE)‐targeting motif of LBR. The altered mobility of the truncated protein suggests that not only do plant cells recognize this signal, but also have nuclear proteins that interact weakly with LBR.  相似文献   

12.
Eriksson C  Rustum C  Hallberg E 《FEBS letters》2004,572(1-3):261-265
Gp210, an integral membrane protein of the nuclear pore complex (NPC), is believed to be involved in NPC biogenesis. To test this hypothesis, we have investigated dynamic properties of the NPC and distribution of NPC proteins in NIH/3T3 cells lacking gp210. POM121 (the other integral NPC protein) and NUP107 (of the NUP107/160 complex) were correctly distributed at the nuclear pores in the absence of gp210. Furthermore, fluorescence recovery after photobleaching experiments showed that POM121 and NUP107 remained stably associated at the NPCs. We conclude that gp210 cannot be required for incorporation of POM121 or NUP107 or be required for maintaining NPC stability.  相似文献   

13.
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.  相似文献   

14.
15.
16.
Protein prenylation is a posttranslational modification involving the covalent attachment of a prenyl lipid to a cysteine at or near the COOH terminus of a protein. It is required for membrane localization and efficient function of a number of cytoplasmic as well as nuclear proteins including the proto-oncogenic and activated forms of Ras. Farnesylation in conjunction with a nuclear localization signal has been shown to be necessary to target newly synthesized nuclear lamins to the inner nuclear envelope membrane. It is, however, not clear where in the cell isoprenylation of nuclear lamins takes place. In this study we describe in vivo and in vitro experiments on the isoprenylation of the Xenopus oocyte nuclear lamin B3. We show by kinetic analysis that newly synthesized lamins are isoprenylated in the cytosol of oocytes before uptake into the nucleus. From our data it can be concluded that isoprenylation of lamins in the nucleus, as it is observed under certain conditions of isoprene starvation, represents a default pathway rather than the physiological situation. We further analyzed the capacity of isolated nuclei to carry out isoprenylation of B3. Our results are in line with a dual localization of a protein farnesyltransferase in the cytosol and nuclei of amphibian oocytes. Implications for the possible functions of a nuclear protein farnesyltransferase as well as possible mechanisms of the selective inhibition of farnesylation of cytoplasmic proteins by peptidomimetics are discussed.  相似文献   

17.
The ability of purified nuclear lamin A, lamin B, lamin C, and vimentin from Ehrlich ascites tumor cells to bind nucleic acids was investigated in vitro via a quantitative filter binding assay. At low ionic strength, vimentin bound more nucleic acid than the nuclear lamins and showed a preference for G-containing nucleic acids. Nuclear lamins A and C were quite similar in their binding properties and bound G- and C-containing nucleic acids preferentially. The binding of poly(dT) by the lamins A and C was reduced in competition experiments by both poly(dG) and poly(dC), but not by poly(dA). Lamin B bound only oligo and poly(dG); no other nucleic acids tested were bound or could compete with the binding of oligo(dG). Vimentin, lamin A, and lamin C specifically bound a synthetic oligonucleotide human (vertebrate) telomere model. The Ka for vimentin (2.7 X 10(7) M-1) was approximately 10-fold higher than those for lamin A (2.8 X 10(6) M-1) and lamin C (2.9 X 10(6) M-1). Lamin B did not bind detectable amounts of the telomere model. Washing of lamin A- and lamin C-nucleic acid complexes, formed at low ionic strength, with solutions containing 150 mM KCl resulted in the elution of 30% of bound poly(dG)12-18 and 70% of bound synthetic oligonucleotide telomere model. These results, using purified individual proteins, are in good agreement with data from competition experiments with vimentin but are at odds with data obtained previously using a crude preparation of nuclear matrix proteins containing all three nuclear lamin proteins (Comings, D. E., and Wallack, A. S. (1978) J. Cell Sci. 34, 233-246). The nuclear lamins A and C and vimentin possess nucleic acid-binding properties that might permit their binding to specific base sequences and/or unique DNA structure, such as that observed for the binding of the telomere model. The significance of the higher affinity binding of nucleic acids by the cytoplasmic protein vimentin (compared with the nuclear lamins) remains to be elucidated.  相似文献   

18.
Nuclear lamins are among the more abundant proteins making up the internal nuclear matrix, but very little is known about their structure in the nucleoplasm. Using immunoelectron microscopy, we demonstrate the organization of lamins in the nuclear matrix isolated from rat hepatocytes for the first time. Lamin epitopes are arrayed both in locally ordered clusters and in quasi-regular rows. Fourier filtering of the images demonstrates that the epitopes are placed at the nodes and halfway between the nodes of square or rhombic lattices that are about 50 nm on each side, as well as along rows at regular ∼25-nm intervals. In addition, we have compared this structure with that of the internal nuclear matrix isolated from persistent hepatocyte nodules. In transformed hepatocytes, the islands of lamin lattice are lost, and only a partial regularity in the rows of gold particles remains. We suggest that orthogonal lattice assembly might be an intrinsic property of lamin molecules, and that the disassembly may be triggered by simple molecular events such as phosphorylation.  相似文献   

19.
BACKGROUND INFORMATION: In a previous study, we showed that GFP (green fluorescent protein) fused to the N-terminal 238 amino acids of the mammalian LBR (lamin B receptor) localized to the NE (nuclear envelope) when expressed in the plant Nicotiana tabacum. The protein was located in the NE during interphase and migrated with nuclear membranes during cell division. Targeting and retention of inner NE proteins requires several mechanisms: signals that direct movement through the nuclear pore complex, presence of a transmembrane domain or domains and retention by interaction with nuclear or nuclear-membrane constituents. RESULTS: Binding mutants of LBR-GFP were produced to investigate the mechanisms for the retention of LBR in the NE. FRAP (fluorescence recovery after photobleaching) analysis of mutant and wild-type constructs was employed to examine the retention of LBR-GFP in the plant NE. wtLBR-GFP (wild-type LBR-GFP) was shown to have significantly lower mobility in the NE than the lamin-binding domain deletion mutant, which showed increased mobility in the NE and was also localized to the endoplasmic reticulum and punctate structures in some cells. Modification of the chromatin-binding domain resulted in the localization of the protein in nuclear inclusions, in which it was immobile. CONCLUSIONS: As expression of truncated LBR-GFP in plant cells results in altered targeting and retention compared with wtLBR-GFP, we conclude that plant cells can recognize the INE (inner NE)-targeting motif of LBR. The altered mobility of the truncated protein suggests that not only do plant cells recognize this signal, but also have nuclear proteins that interact weakly with LBR.  相似文献   

20.
Mechanical cell properties play an important role in many basic biological functions, including motility, adhesion, proliferation and differentiation. There is a growing body of evidence that the mechanical cell phenotype can be used for detection and, possibly, treatment of various diseases, including cancer. Understanding of pathological mechanisms requires investigation of the relationship between constitutive properties and major structural components of cells, i.e., the nucleus and cytoskeleton. While the contribution of actin und microtubules to cellular rheology has been extensively studied in the past, the role of intermediate filaments has been scarcely investigated up to now. Here, for the first time we compare the effects of drug-induced disruption of actin and vimentin intermediate filaments on mechanical properties of suspended NK cells using high-throughput deformability measurements and computational modeling. Although, molecular mechanisms of actin and vimentin disruption by the applied cytoskeletal drugs, Cytochalasin-D and Withaferin-A, are different, cell softening in both cases can be attributed to reduction of the effective density and stiffness of filament networks. Our experimental data suggest that actin and vimentin deficient cells exhibit, in average, 41% and 20% higher deformability in comparison to untreated control. 3D Finite Element simulation is performed to quantify the contribution of cortical actin and perinuclear vimentin to mechanical phenotype of the whole cell. Our simulation provides quantitative estimates for decreased filament stiffness in drug-treated cells and predicts more than two-fold increase of the strain magnitude in the perinuclear vimentin layer of actin deficient cells relatively to untreated control. Thus, the mechanical function of vimentin becomes particularly essential in motile and proliferating cells that have to dynamically remodel the cortical actin network. These insights add functional cues to frequently observed overexpression of vimentin in diverse types of cancer and underline the role of vimentin targeting drugs, such as Withaferin-A, as a potent cancerostatic supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号