首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Changes in plasma membrane permeability caused by H2O2 were recently found to be involved in the adaptation to H2O2, but the mechanism responsible for this change remains largely unknown. Here this mechanism was addressed and two lines of evidence showed for the first time that fatty acid synthase (Fas) plays a key role during the cellular response of Saccharomyces cerevisiae to H2O2: (1) adaptation was associated with a decrease in both Fas expression and activity; (2) more importantly, decreasing Fas activity by 50% through deletion of one of the FAS alleles increased the resistance to lethal doses of H2O2. The mechanism by which a decrease of Fas expression causes a higher resistance to H2O2 was not fully elucidated. However, the fas1Delta strain plasma membrane had large increases in the levels of lignoceric acid (C24:0) (40%) and cerotic acid (C26:0) (50%), suggesting that alterations in the plasma membrane composition are involved. Very-long-chain fatty acids (VLCFA) through interdigitation or by modulating formation of lipid rafts may decrease the overall or localized plasma membrane permeability to H2O2, respectively, thus conferring a higher resistance to H2O2.  相似文献   

2.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.  相似文献   

3.
Independently, superoxide (O2-) and nitric oxide (NO) are biologically important signaling molecules. When co-generated, these radicals react rapidly to form powerful oxidizing and nitrating intermediates. Although this reaction was once thought to be solely cytotoxic, herein we demonstrate using MCF7, macrophage, and endothelial cells that when nanomolar levels of NO and O2- were produced concomitantly, the effective NO concentration was established by the relative fluxes of these two radicals. Differential regulation of sGC, pERK, HIF-1alpha, and p53 were used as biological dosimeters for NO concentration. Introduction of intracellular- or extracellular-generated O2- during NO generation resulted in a concomitant increase in oxidative intermediates with a decrease in steady-state NO concentrations and a proportional reduction in the levels of sGC, ERK, HIF-1alpha, and p53 regulation. NO responses were restored by addition of SOD. The intermediates formed from the reactions of NO with O2- were non-toxic, did not form 3-nitrotyrosine, nor did they elicit any signal transduction responses. H2O2 in bolus or generated from the dismutation of O2- by SOD, was cytotoxic at high concentrations and activated p53 independent of NO. This effect was completely inhibited by catalase, suppressed by NO, and exacerbated by intracellular catalase inhibition. We conclude that the reaction of O2- with NO is an important regulatory mechanism, which modulates signaling pathways by limiting steady-state levels of NO and preventing H2O2 formation from O2-.  相似文献   

4.
5.
6.
1,2,3,4,6-Penta-O-galloyl-β-d-glucose (PGG) inhibits glioma cancer U251 cells, more strongly than MDA-MB-231 and U87 cells. In addition, PGG is transported across cancer cell membrane to further down-regulate FAS and activate caspase-3 in MDA-MB-231 cells. Compared with other FAS inhibitors, including catechin gallate and morin, PGG involves a higher reversible fast-binding inhibition with half-inhibitory concentration value (IC50) of 1.16 μM and an irreversible slow-binding inhibition, i.e. saturation kinetics with a dissociation constant of 0.59 μM and a limiting rate constant of 0.16 min−l. The major reacting site of PGG is on the β-ketoacyl reduction domain of FAS. PGG exhibits different types of inhibitions against the three substrates in the FAS overall reaction. The higher concentrations of PGG tested (higher than 20 μM) clearly altered the secondary structure of FAS by increasing the α-helix and induced a redshift in the FAS spectra. In addition, only PGG concentrations higher than 20 μM resulted in FAS precipitation.  相似文献   

7.
Oxidative stress has been associated with multiple pathologies and disease states, including those involving the cardiovascular system. Previously, we showed that pulmonary artery endothelial cells (PAECs) undergo apoptosis after acute exposure to H(2)O(2). However, the underlying mechanisms regulating this process remain unclear. Because of the prevalence of H(2)O(2) in normal physiological processes and apparent loss of regulation in disease states, the purpose of this study was to develop a more complete understanding of H(2)O(2)-mediated adverse effects on endothelial cell survival. Acute exposure of PAECs to H(2)O(2) caused a dose-dependent increase in cellular release of lactate dehydrogenase and a significant increase in production of superoxide ions, which appear to be generated within the mitochondria, as well as a significant loss of mitochondrial membrane potential and activity. Subsequent to the loss of mitochondrial membrane potential, PAECs exhibited significant caspase activation and apoptotic nuclei. We also observed a significant increase in intracellular free Zn(2+) after bolus exposure to H(2)O(2). To determine whether this increase in Zn(2+) was involved in the apoptotic pathway induced by acute H(2)O(2) exposure, we developed an adenoviral construct for overexpression of the Zn(2+)-binding protein metallothionein-1. Our data indicate that chelating Zn(2+), either pharmacologically with N,N,N',N-tetrakis(2-pyridylmethyl)ethylene diamine or by overexpression of the Zn(2+)-binding protein metallothionein-1, in PAECs conferred significant protection from induction of apoptosis and cell death associated with the effects of acute H(2)O(2) exposure. Our results show that the acute toxicity profile of H(2)O(2) can be attributed, at least in part, to liberation of Zn(2+) within PAECs. We speculate that regulation of Zn(2+) levels may represent a potential therapeutic target for cardiovascular disease associated with acute oxidative stress.  相似文献   

8.
Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.  相似文献   

9.
The sulphydryl containing anti-rheumatic drug D-penicillamine mildly inhibited proteoglycan synthesis in cartilage explant cultures by a mechanism not dependent upon H2O2 generation. More importantly, this drug alleviated the suppression of PG synthesis mediated by 10(-4) M H2O2 in a dose-dependent manner at concentrations of reduced drug similar to those plasma levels reported in vivo. The ability of D-penicillamine to reverse this effect was due solely to a reaction which resulted in scavenging of medium H2O2 and was not due to the "repair" of cellular lesions caused by prior exposure to H2O2.  相似文献   

10.
Differential regulation of antioxidant enzymes in response to oxidants.   总被引:10,自引:0,他引:10  
We have demonstrated the selective induction of manganese superoxide dismutase (MnSOD) or catalase mRNA after exposure of tracheobronchial epithelial cells in vitro to different oxidant stresses. Addition of H2O2 caused a dose-dependent increase in catalase mRNA in both exponentially growing and confluent cells. A 3-fold induction of catalase mRNA was seen at a nontoxic dose of 250 microM H2O2. Increase in the steady-state mRNA levels of glutathione peroxidase (GPX) and MnSOD were less striking. Expression of catalase, MnSOD, and GPX mRNA was highest in confluent cells. In contrast, constitutive expression of copper and zinc SOD (CuZnSOD) mRNA was greatest in dividing cells and was unaffected by H2O2 in both exponentially growing and confluent cells. MnSOD mRNA was selectively induced in confluent epithelial cells exposed to the reactive oxygen species-generating system, xanthine/xanthine oxidase, while steady-state levels of GPX, catalase, and CuZnSOD mRNA remained unchanged. The 3-fold induction of MnSOD mRNA was dose-dependent, reaching a peak at 0.2 unit/ml xanthine oxidase. MnSOD mRNA increases were seen as early as 2 h and reached maximal induction at 24 h. Immunoreactive MnSOD protein was produced in a corresponding dose- and time-dependent manner. Induction of MnSOD gene expression was prevented by addition of actinomycin D and cycloheximide. These data indicate that epithelial cells of the respiratory tract respond to different oxidant insults by selective induction of certain antioxidant enzymes. Hence, gene expression of antioxidant enzymes does not appear to be coordinately regulated in these cell types.  相似文献   

11.
Orogastric tube feeding is indicated for neonates with impaired ability to ingest and can be administered by intermittent bolus or continuous schedule. Our aim was to determine whether feeding modalities affect muscle protein deposition and to identify mechanisms involved. Neonatal pigs were overnight fasted (FAS) or fed the same amount of food continuously (CON) or intermittently (INT; 7 × 4 h meals) for 29 h. For 8 h, between hours 20 and 28, pigs were infused with [(2)H(5)]phenylalanine and [(2)H(2)]tyrosine, and amino acid (AA) net balances were measured across the hindquarters. Insulin, branched-chain AA, phenylalanine, and tyrosine arterial concentrations and whole body phenylalanine and tyrosine fluxes were greater for INT after the meal than for CON or FAS. The activation of signaling proteins leading to initiation of mRNA translation, including eukaryotic initiation factor (eIF)4E·eIF4G complex formation in muscle, was enhanced by INT compared with CON feeding or FAS. Signaling proteins of protein degradation were not affected by feeding modalities except for microtubule-associated protein light chain 3-II, which was highest in the FAS. Across the hindquarters, AA net removal increased for INT but not for CON or FAS, with protein deposition greater for INT. This was because protein synthesis increased following feeding for INT but remained unchanged for CON and FAS, whereas there was no change in protein degradation across any dietary treatment. These results suggest that muscle protein accretion in neonates is enhanced with intermittent bolus to a greater extent than continuous feeding, mainly by increased protein synthesis.  相似文献   

12.
13.
氧化应激是诱导性多能干细胞(induced pluripotent stem cell, iPSC)在培养和应用中遇到的一个关键问题,探讨其作用机制具有重要的理论和实践意义。目前有关iPSC氧化应激的研究相对较少,Nrf2/HO-1信号通路在其中的作用尚不明了。因此,本研究以不同浓度的H2O2(100、200、300、400 μmol/L)处理人iPSC(hiPSC),分别在4 h和24 h于倒置显微镜下观察hiPSC及其饲养层细胞SNL氧化损伤的程度,通过碱性磷酸酶(alkaline phosphatase, AP)试剂盒和超氧化物阴离子荧光探针,分别检测hiPSC多能性和细胞活性氧(reactive oxygen species, ROS)水平,并通过qRT-PCR检测H2O2处理4 h后早期应激状态下Nrf2和HO 1 mRNA的表达水平,免疫细胞化学和Western印迹检测p-Nrf2和HO-1蛋白质的表达量。结果表明:hiPSC和SNL细胞的ROS水平呈H2O2剂量依赖性升高。除了100 μmol/L H2O2组hiPSC的细胞形态和多能性保持较好外,其余浓度H2O2均导致hiPSC出现不同程度损伤和死亡。但与SNL细胞相比,hiPSC中ROS水平相对较低,细胞状态也相对较好。SNL细胞中Nrf2和HO-1-mRNA表达的变化幅度与H2O2浓度呈线性相关,而hiPSC中Nrf2和HO-1表达的变化幅度与H2O2浓度之间并未呈现线性相关,其中Nrf2在100 μmol/L H2O2组表达量最高,而HO-1在200 μmol/L H2O2组表达量最高,意味着hiPSC氧化应激调控机制的复杂性。综上结果表明,hiPSC具有较好的抗氧化能力,其相关机制与Nrf2/HO-1信号通路有关,同时也可能涉及到其它相关通路的交互作用。  相似文献   

14.
Glucose uptake into adipose and liver cells is known to up-regulate mRNA levels for various lipogenic enzymes such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). To determine whether the hexosamine biosynthesis pathway (HBP) mediates glucose regulation of mRNA expression, we treated primary cultured adipocytes for 18 h with insulin (25 ng/ml) and either glucose (20 mm) or glucosamine (2 mm). A ribonuclease protection assay was used to quantitate mRNA levels for FAS, ACC, and glycerol-3-P dehydrogenase (GPDH). Treatment with insulin and various concentrations of d-glucose increased mRNA levels for FAS (280%), ACC (93%), and GPDH (633%) in a dose-dependent manner (ED50 8-16 mm). Mannose similarly elevated mRNA levels, but galactose and fructose were only partially effective. l-glucose had no effect. Omission of glutamine from the culture medium markedly diminished the stimulatory effect of glucose on mRNA expression. Since glutamine is a crucial amide donor in hexosamine biosynthesis, we interpret these data to mean that glucose flux through the HBP is linked to regulation of lipogenesis through control of gene expression. Further evidence for hexosamine regulation was obtained using glucosamine, which is readily transported into adipocytes where it directly enters the HBP. Glucosamine was 15-30 times more potent than glucose in elevating FAS, ACC, and GPDH mRNA levels (ED50 approximately 0.5 mm). In summary: 1) GPDH, FAS, and ACC mRNA levels are upregulated by glucose; 2) glucose-induced up-regulation requires glutamine; and 3) mRNA levels for lipogenic enzymes are up-regulated by glucosamine. Hyperglycemia is the hallmark of diabetes mellitus and leads to insulin resistance, impaired glucose metabolism, and dyslipidemia. We postulate that disease pathophysiology may have a common underlying factor, excessive glucose flux through the HBP.  相似文献   

15.
目的探讨DHA对肝X受体激动剂T0901317诱导的HepG2细胞甘油三酯积聚的影响。方法体外培养HepG2细胞,以50μmol/LDHA、10μmol/LT0901317分别处理细胞以及50μmloL/LDHA和10μmol/LT0901317共同处理细胞48h。油红0染色观察细胞内脂质沉积;氯仿-甲醇抽提细胞总脂质,酶法定量检测细胞甘油三酯含量;实时定量PCR检测与脂肪酸代谢相关基因如SREBP-1c、FAS、SCD-1、PPARa和CD36的mRNA水平。结果与对照组相比,10μmol/LT0901317处理48h后,HepG2细胞内的油红O染色脂滴增多,甘油二酯浓度升高了50%;脂肪酸合成基因:SREBP-1c、FAS和SCD-1及脂肪酸吸收基因CD36的mRNA水平分别升高了9.9、5.2、2.2和1.5倍,而脂肪酸降解基因PPARoz的mRNA无变化。DHA与T0901317共同处理的HepG2细胞内脂滴明显减少;甘油三酯含量比70901317处理组降低了15%:SREBP—1c、FAS、SCD-1和CD36的mRNA水平比T0901317处理组分别降低了92%、31%、46%和60%,而PPARa的mRNA水平比T0901317处理组升高了30%。结论DHA通过降低脂肪酸合成和吸收基因的表达并升高脂肪酸降解基因的表达缓解肝x受体激活所致HepG2细胞内甘油三酯积聚。  相似文献   

16.
Increased oxidative stress has been associated with obesity-related disorders. In this study, we investigated how oxidative stress, in different ways of exposure, regulates gene expression of various adipokines in 3T3-L1 adipocytes. Exposure to 100-500microM H(2)O(2) for 10min, as well as exposure to 5-25mU/ml glucose oxidase for 18h, similarly decreased adiponectin, leptin, and resistin mRNAs, and increased plasminogen activator inhibitor-1 mRNA. Secretion levels of adipokines were also changed by oxidative stress in parallel with mRNA expression levels. Although a peak increase in plasminogen activator inhibitor-1 mRNA was achieved between 4 and 8h after exposure to H(2)O(2) for 10min, significant decreases in adiponectin and resistin mRNA were observed after 16h, while leptin mRNA was decreased earlier. Our results suggest that oxidative stress, even of short duration, has a significant impact on the regulation of various adipokine gene expressions favoring atherosclerosis.  相似文献   

17.
The objective of this study was to assess the effects of cobalt and zinc exposure of rainbow trout (Oncorhynchus mykiss) on insulin like growth factors (IGF) and growth hormone (GH). Mature rainbow trouts were exposed to 0.42, 2.1, 4.2, 21 and 42μmol/L Co(2+) (added as CoCl(2)·6H(2)O) and 0.34, 1.7, 3.4, 17 and 34μmol/L Zn(2+) (added as ZnSO(4)i·7H(2)O). After 6, 12, 24 and 48h of treatment, expressions of white muscle IGF-I, IGF-II and GH mRNAs were measured by means of quantitative Real Time PCR. During the exposure experiments, no mortalities occurred. The most effective metal concentrations, which caused significant alterations, were determined to be 42μmol/L Co(2+) (10mg CoCl(2)·6H(2)O/L) and 3.4μmol/L Zn(+2) (1mg ZnSO(4)·7H(2)O/L). The following results were obtained for these concentrations. Expression of IGF-I did not change at 6h in zinc treatment while the decrease (p<0.05) was observed at 12h and 24h, and this decrease became stronger at 48h. Cobalt exposure caused a decrease in IGF-I mRNA level at 6h, 12h, 24h and 48h (p<0.05). Both zinc and cobalt exposure resulted in significant decreases in GH expression at 6h. Exposure of trout to Zn resulted in a decrease in expression of IGF-II starting from 6h whereas the significant decrease started at 6h in cobalt exposure and this decrease elevated at 24h. The results indicate that micromolar cobalt and zinc exposure causes significant attenuation in the expressions of these three genes' time dependently. Our findings show that IGF-I is the most resistant and GH is the most sensitive component against cobalt and zinc exposure. We conclude that IGF/GH axis might be strongly affected by the short term exposure to low micromolar concentrations of zinc and cobalt due to alterations of these genes.  相似文献   

18.
We compared measurements of cell survival and DNA single-strand breaks (SSBs) caused by hydrogen peroxide (H2O2) and UVA radiation (365-nm) in both a parental and a H2O2-resistant variant of the Chinese hamster ovary HA1 line derived by culturing cells in progressively higher concentrations of H2O2. Both RNA slot blot analysis and enzyme analysis confirmed that the variant possesses high levels of both catalase activity and mRNA. The variant was completely resistant to the lethal effects of H2O2 over the concentration range tested (up to 480 microM), whereas the parental strain showed less than 1% survival at this concentration. Similarly, the H2O2-resistant strain exhibited far fewer SSBs after exposure to H2O2 than the parental strain. Addition of o-phenanthroline to the parental cells during H2O2 exposure almost completely inhibited SSB induction, evidence that these SSBs are produced via the Fenton pathway of Haber-Weiss reactions. Very little difference was found between the variant and the parent after exposure to 365-nm radiation: only a minor difference in survival kinetics and no difference is SSB induction were observed between the two cell lines. These results are consistent with a hypothesis that most lethal events caused in cells by UVA occur by pathways that do not involve the H2O2 that is produced by sensitized reactions within the cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号