首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reasons for poor establishment of direct re-seeded grassland   总被引:1,自引:0,他引:1  
These experiments suggest a number of causes for the poor establishment of direct reseeded grass. An adequate supply of moisture to the seed is of prime importance and burial of trash in drill slits may impair this supply by preventing seed/soil contact directly or by preventing closure of the drill slit. Management techniques which aim to reduce the burden of trash in areas to be sown by direct drilling, usually result in improvements in emergence. This is achieved by improved seed/soil contact, reduced evaporation of water from an open drill slit and lowered probability of phytotoxic leachates being produced. It is possible that benefits might be achieved were it possible to select for sowing seed of proven high vigour, i.e. seed that establishes well in poor conditions.  相似文献   

2.
Summary Proximity of new wheat straw residues to sown wheat seed has an effect on germination, plant growth and ultimate yield. Decomposition of wheat straw may produce toxins or it may cause immobilization of nitrogen in, or applied to the soil. In pot experiments, it has been shown that germination of wheat was depressed when large amounts of straw were decomposed on the surface for up to 18 days; after 54 days it had no effect on germination. Immobilization of nitrogen occurred mainly when the straw was mixed with the soil, or when surface-rotted straw was ploughed into the soil just before seeding. The latter effect could not be overcome by the addition of mineral nitrogen. Part II, Plant and Soil 38, 347–361 (1973).  相似文献   

3.
BACKGROUND AND AIMS: Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. METHODS: Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. KEY RESULTS: Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. CONCLUSIONS: These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.  相似文献   

4.
Cocksfoot cv. Aberystwyth S 26 and timothy cv. Scots were found to be significantly more susceptible to pre-emergence death caused by Fusarium nivale and F. culmorum than were either perennial ryegrass cv. Gremie, or Italian ryegrass cv. RvP. The extent to which each grass was affected by Fusarium at the pre-emergence stage was markedly influenced by both the air temperature and the level of inoculum present in the soil at the time the seeds were sown. Under all conditions, however, cocksfoot and timothy suffered greater reductions in emergence when sown in soil containing either species of Fusarium than did the ryegrasses.
Evidence is presented which suggests that the extreme susceptibility of cocksfoot and timothy to pre-emergence damage is related to the slow germination of the former and the small seed size of the latter.
In addition to their direct effects on seedling numbers both fungi reduced the vigour of those seedlings which did emerge, cocksfoot and timothy being particularly badly affected.  相似文献   

5.
Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha-1 was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.  相似文献   

6.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

7.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

8.
Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring.Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined.Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds.Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment.  相似文献   

9.
Ten organic amendments were added to unsterile soil which was contaminated 14 days later with Corticium praticola and sown with lettuce seeds. Substantial increases in final stands of seedlings were obtained with grass meal, bran and wood cellulose. Corn and barley meal, linseed cake and fish meal decreased final stands; molassine meal, potato starch and peptone had relatively little effect. Seedlings grown with wood cellulose were very chlorotic and stunted. Up to 30% of lettuce seeds sown in soil which, 180 days earlier, had been amended with corn meal and contaminated with C. praticola became colonized by the fungus. None was colonized in unamended soil or in soil amended with grass meal. Ninety days after amendment and contamination fewer seeds were colonized in soil amended with grass meal than in unamended soil. The amendment of soil with grass meal was as effective as thiram seed treatment in protecting lettuce seedlings against C. praticola and grass meal was particularly effective in reducing both the numbers of seedlings attacked and the survival of the fungus in the soil.  相似文献   

10.
LauraGough 《Ecography》2006,29(1):44-56
In relatively harsh environments such as arctic tundra, abiotic factors have traditionally been considered the primary determinants of community structure, overwhelming any effects of biotic interactions such as competition. Two common low arctic tundra types that differ in soil properties, moist acidic and moist non-acidic tussock tundra (MAT and MNT, respectively), occur in close proximity in northern Alaska. Several plant species occur in both communities with different relative abundance, while others are restricted to one. This study experimentally examined how neighboring vegetation affects germination, survival, and growth of species in these two communities that differ in soil pH, cation availability, and other characteristics. Germination of sown seeds was greater than background levels suggesting seed limitation may restrict recruitment of these clonal, perennial species. Germination of sown seeds was greater at both sites when both mosses and vascular plants had been removed compared to plots with intact vegetation. However, neighbors had almost no effect on survival and growth of adult transplants. Patterns of germination, survival and growth of several species differed depending on the community of origin and the community of destination of the seeds or transplanted adults. For example, transplants of the sedge Eriophorum vaginatum grew better if they were from MAT, and this species germinated better when sown at MNT. Although of relatively short duration (three growing seasons), this study suggests that biotic interactions may affect local species composition by restricting germination and establishment in these two communities, but have less of an effect on adult plants. Not surprisingly, site-specific abiotic conditions also exhibit control over species occurrence and relative abundance. Without disturbance to clear bare ground for recruitment of new individuals, these populations for the most part must rely on clonal growth to persist.  相似文献   

11.
Seed harvesting ants (mainly Pheidole spp.) in the Katherine area of the Northern Territory have been observed to actively forage seed in both native and sown pasture areas. Using discrete mixtures of seeds it was found that ants from colonies in both sown and native pastures would preferentially remove seed of the native grass species, Themeda australis and Digitaria ciliaris, to the introduced legume Stylosanthes humilis. This difference in selection could not be explained solely on a basis of size or weight differences between the species. The preference for grass species over introduced legumes indicates that ant predation is not the main factor in the low seed survival to germination in introduced pastures.  相似文献   

12.
Investigations were carried out at the Gezira Research Farm in the Anglo-Egyptian Sudan. The greater majority of the seeds of Striga hermonthica can only be germinated by excretions from roots of certain plants not all of which can act as hosts for this parasite. Unless it becomes attached to a host plant, the Striga seedling dies. The growing of those plants whose roots can stimulate the germination of Striga seed but cannot be parasitized by it, may be a means of ridding infested land of this parasite. Green ovaries picked from flowering plants produce viable seeds if left to dry. Sorghum is sown in the field during the rainy season, viz. June to October: the earlier the sowing date within this period the greater is the Striga attack. In the field Striga seeds are distributed in the soil to a depth of at least 15 in. When Striga seeds are evenly distributed through the soil, the number of Striga seedlings attached to a sorghum root is proportional to the root's development. Size of sorghum seed has no effect on the root size of a sorghum plant and consequently no effect on the degree of parasitism. The effect of severe Striga attack on the sorghum plant is to produce a reduction of about 60% in leaf and root weight. No reduction of Striga attack is obtained when various micro-elements are coated on sorghum seeds before sowing. Field and laboratory experiments show that light irrigation of the sorghum crop during the normal sowing period increases the Striga attack and heavy irrigation decreases it. This result was not obtained in laboratory experiments when sorghum was sown out of season. Striga attack is lessened when conditions favouring growth of the sorghum crop are improved.  相似文献   

13.
Calcareous grasslands are rich in biodiversity and thus receive much attention in nature conservation. In such grasslands, the formation of moss layers is perceived as a management problem. However, its impacts on the community level are complex, as not only inhibition but also facilitation of vascular plant recruitment occur. Possible filters of recruitment are shading by mosses, isolation from soil resources and the resulting desiccation. To understand how seed size and shape moderate moss effects, a combined glasshouse and field experiment was conducted in southern Germany. Seeds of 14 species from calcareous grasslands were sown either on top or underneath a moss layer, or on bare soil without moss. We determined the total number of emerged and established seedlings, i.e. the ones that survived until the end of the experiment. Both measures were reduced for most species sown on moss, while mortality was slightly enhanced by moss presence. Seed size explained a significant proportion of the moss effects on plant recruitment. Inhibitive effects on recruitment increased with seed size when seeds were placed on top of moss. When germinating underneath moss, the effect on emergence changed from negative in small-seeded plant species to positive in large-seeded species, but this effect was insignificant for establishment. The positive response in large seeds was probably due to their higher moisture requirements for imbibition, and lower dependency on light for germination. However, moss-seed-interactions were not affected by seed shape. Seedling establishment of plants with large seeds strongly depended on their initial position in moss, while small-seeded species showed no effect. Hence, moss layers constitute a selective recruitment filter by modifying seed penetration and hence germination conditions. This effect could increase beta diversity of vascular plant species in calcareous grasslands, and thus conservation should aim at intermediate and patchy moss abundance.  相似文献   

14.
Seedling establishment is influenced by litter cover and by seed predators, but little is known about interactions between these two factors. We tested their effects on emergence of five typical grassland species in a microcosm experiment. We manipulated the amounts of grass litter, seed sowing position and earthworm activity to determine whether: (i) the protective effect of litter against seed predation depends on cover amount and seed sowing position, i.e., on top or beneath litter; (ii) seed transport by earthworms changes the effect of seed sowing position on seedling emergence; and (iii) seeds transported into deeper soil layers by earthworms are still germinable. Litter cover and presence of earthworms lowered seedling emergence. The impact of seed position increased with seed size. Emergence of large-seeded species was reduced when sown on the surface. Additionally, we found an important seed position × earthworm interaction related to seed size. Emergence of large-seeded species sown on top of the litter was up to three times higher when earthworms were present than without earthworms. Earthworms also significantly altered the depth distribution of seeds in the soil and across treatments: on average 6% of seeds germinated after burial. In contrast to the seed position effect, we found no size effect on mobility and germinability of seeds after burial in the soil. Nevertheless, the fate of different-sized seeds may differ. While burial will remove large seeds from the regeneration pool, it may enhance seed bank build up in small-seeded species. Consequently, changes in the amount of litter cover and the invertebrate community play a significant role in plant community composition.  相似文献   

15.
Ungerminated seeds, fluid-drilled germinating seeds and fluid-drilled uniformly-germinated seeds were sown in furrows that were either uncovered or covered by soil and left unmulch ed or mulched with polyethylene sheet. The effects of these treatments on the emergence and growth of carrots for early harvest were examined. Leaving seeds uncovered or mulching them with polyethylene advanced seedling emergence and increased the percentage that emerged; leaving seeds uncovered also reduced the spread of emergence times and produced seedlings with larger cotyledons. Uniformly-germinated seeds emerged before germinating seeds and both emerged before ungerminated seeds. The best combination of treatments (i.e. mulched, uncovered uniformly-germinated seeds) reduced the mean number of days for emergence from the 52 required by traditionally sown seeds to 29. There was a more variable effect of seed treatments on the spread of emergence times and the percentage emergence. Earlier emergence generally led to roots reaching a marketable size earlier and more uniform emergence led to less variation in root weights at harvest.  相似文献   

16.

Background and Aims

Bulbils serve as a means of vegetative reproduction and of dispersal for many plants; this latter aspect making them analogous to seeds. However, germination of bulbils may differ considerably from seeds due to dissimilar anatomical structures and perhaps environmental cue perception. The few laboratory studies done on bulbils suggest that their germination is similar to that of seeds in the same habitats and to vegetative buds of winter-dormant plants. The present study is the first to examine how bulbil germination is controlled in nature in relation to dispersal (before vs. after winter of the same cohort) and to ambient temperatures.

Methods

Under laboratory conditions, temperature and light requirements for root and shoot emergences from bulbils of Dioscorea polystachya collected in September, 2005, February, 2006 (produced in 2005) and July, 2006 were determined. Effects of cold stratification and dry storage for releasing dormancy were tested on September and July bulbils. The phenology of dormancy release and of root and shoot emergences and the persistence of bulbils in soil were followed over time under field conditions.

Key Results

Although a low percentage of bulbils collected in July or in September produced roots, but no shoots, in the laboratory and field, these roots died within approx. 1 month. Regardless of collection date, cold stratification markedly increased root and shoot emergences. Bulbils sown outdoors in October produced roots and shoots the following March and April, respectively. The soil bulbil bank is short lived.

Conclusions

Bulbils of D. polystachya are similar to seeds of many temperate plants being mostly dormant when dispersed in summer or autumn and overcoming dormancy with cold stratification during winter. Adaptively, bulbil germination primarily occurs in spring at the beginning of a favourable period for survivorship and growth.  相似文献   

17.
Concerns about declining populations of terrestrial orchids make it important to identify the environmental factors crucial to seedling recruitment. This study shows that seedlings of Tipularia discolor (cranefly orchid) primarily occur on decomposing wood. Extensive searches of decomposing logs and stumps in mature and successional forests revealed seedlings at 24 sites, of which 15 could be identified as originating from seven different deciduous trees and one conifer. Seeds were planted in natural habitats to test the hypothesis that germination requires decomposing wood. In one experiment, seeds were placed into soil at sites where adult plants were abundant; no germination resulted. In a second experiment, germination of seeds sown in ambient soil was compared with sowings in plots amended with decomposing wood collected from a stump where spontaneous seedlings grew. Germination was much more frequent in plots amended with decomposing wood. We conclude that germination of T. discolor is stimulated in substrates that contain decomposing wood; judging from the occurrence of spontaneous seedlings, wood from at variety of tree species offer a suitable substrate.  相似文献   

18.
Sunflower plants treated with the nonprotein amitio add, DL-β-attiino- n -butyric acid (BABA) were protected against infection with Plasmopara helianthi. Soil drenches at the highest rates (150-250 mg/kg soil), applied one day before the inoculation induced high levels of protection (80-83%) against the disease and more than 90% control was observed when BABA was applied at 300 mg/kg soil. However, at this concentration phytotoxic symptoms were observed. This compound also provided a curative activity when applied one day post-inoculation. BABA had no antifungal activity in vitro against P. helianthi. The effect of BABA on zoosporangia germination was evaluated by treating pre-germinated seeds with the compound solution and the zoosporangia suspension for 3 h. Then, seeds were sown and the percentages of infected plants were determined. The other two aminobutyric acid isomers (a and g) were ineffective against downy mildew. The mechanisms by which DL-β-amino- n -butyric acid protect sunflowers against downy mildew awaits more detailed elucidation.  相似文献   

19.
Both dark and red light germination of lettuce seeds (cv. “Maikönig”) as well as their root and hypocotol elongation were inhibited when the seeds were sown in petri dishes together with a few seeds of Heracleum laciniatum Horn. This inhibition was not significantly counteracted by the presence of gibberellic acid (GA3) or/and 6-benzylaminopurine (BA). However, a large proportion of the lettuce seeds germinated abnormally (only cotyledons emerged) when treated with BA in the presence of Heracleum seeds. GA3 had alone no significant effect on abnormal germination, but it counteracted the effect of BA to some extent. The inhibitory effect of Heracleum seeds gradually disappeared during a moist incubation period of one to seven days in darkness at 25°C. When lettuce seeds were pre-incubated together with Heracleum seeds for one to five days the remaining, non-germinated lettuce seeds had lost their ability for subsequent germination in darkness in distilled water. This induced dark dormancy was to a great extent broken by red light, but not by GA3 or/and BA. H. laciniatum seeds inhibited the germination of Salix pentandra seeds and to some extent also the germination of radish but had no effect on the germination of spruce.  相似文献   

20.
Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号