首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.  相似文献   

2.
Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.  相似文献   

3.
4.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) mediates apoptosis in cancer cells through death receptors DR4 and DR5 preferring often one receptor over another in the cells expressing both receptors. Receptor selective mutant variants of TRAIL and agonistic antibodies against DR4 and DR5 are highly promising anticancer agents. Here using DR5 specific mutant variant of TRAIL - DR5-B we have demonstrated for the first time that the sensitivity of cancer cells can be shifted from one TRAIL death receptor to another during co-treatment with anticancer drugs. First we have studied the contribution of DR4 and DR5 in HCT116 p53+/+ and HCT116 p53−/− cells and demonstrated that in HCT116 p53+/+ cells the both death receptors are involved in TRAIL-induced cell death while in HCT116 p53−/− cells prevailed DR4 signaling. The expression of death (DR4 and DR5) as well as decoy (DcR1 and DcR2) receptors was upregulated in the both cell lines either by TRAIL or by bortezomib. However, combined treatment of cells with two drugs induced strong time-dependent and p53-independent internalization and further lysosomal degradation of DR4 receptor. Interestingly DR5-B variant of TRAIL which do not bind with DR4 receptor also induced elimination of DR4 from cell surface in combination with bortezomib indicating the ligand-independent mechanism of the receptor internalization. Eliminatory internalization of DR4 resulted in activation of DR5 receptor thus DR4-dependent HCT116 p53−/− cells became highly sensitive to DR5-B in time-dependent manner. Internalization and degradation of DR4 receptor depended on activation of caspases as well as of lysosomal activity as it was completely inhibited by Z-VAD-FMK, E-64 and Baf-A1. In light of our findings, it is important to explore carefully which of the death receptors is active, when sensitizing drugs are combined with agonistic antibodies to the death receptors or receptor selective variants of TRAIL to enhance cancer treatment efficiency.  相似文献   

5.
Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice.  相似文献   

6.
Heat shock protects HCT116 and H460 cells from TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Heat shock proteins have been shown to protect cells from a variety of stressful conditions, including hyperthermia, oxidative and DNA damage, serum withdrawal, and a variety of chemicals. HSP27, HSP70, and HSP90 have been shown to downregulate different aspects of apoptosome assembly. TRAIL is a member of the TNF family of ligands and is a promising anti-cancer agent. It has been shown to be nontoxic to most normal cell types, while it is a potent killer of many different cancer cells. TRAIL engages both the receptor-mediated (extrinsic) and the mitochondria-initiated (intrinsic) cascades. We tested whether heat shock affects TRAIL-induced apoptosis in different cancer cells. TRAIL treatment does not induce HSP27, HSP70, or HSP90 levels. Nonetheless, when treated with TRAIL for 3 h after release from heat shock, the human colon cancer cell line HCT116 is protected from apoptosis whereas the human colon cancer cell line SW480 is not. This pattern is consistent with the previously observed behavior of HCT116 as Type II cells that depend on mitochondrial signaling and SW480 as Type I, whose TRAIL-induced death is not sensitive to inhibition of caspase 9. Moreover, the failure of heat shock to protect SW480 cells is not due to a lack of HSP70 or HSP90 upregulation. HSP70 and HSP90 are induced 3 h after release from heat shock, whereas HSP27 is induced much later. Thus, the observed protective effect against TRAIL is probably due to the anti-apoptotic effects of HSP70 and HSP90. These results further illustrate interactions between TRAIL receptor signaling and the intrinsic cell death pathway and have practical implications for the potential use of TRAIL and hyperthermia in cancer therapy.  相似文献   

7.
Mutations in the oncogenic PIK3CA gene are found in 10–20% of colorectal cancers (CRCs) and are associated with poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic TRAIL death receptor antibodies emerged as promising anti-neoplastic therapeutics, but to date failed to prove their capability in the clinical setting as especially primary tumors exhibit high rates of TRAIL resistance. In our study, we investigated the molecular mechanisms underlying TRAIL resistance in CRC cells with a mutant PIK3CA (PIK3CA-mut) gene. We show that inhibition of the constitutively active phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway only partially overcame TRAIL resistance in PIK3CA-mut-protected HCT116 cells, although synergistic effects of TRAIL plus PI3K, Akt or cyclin-dependent kinase (CDK) inhibitors could be noted. In sharp contrast, TRAIL triggered full-blown cell death induction in HCT116 PIK3CA-mut cells treated with proteasome inhibitors such as bortezomib and MG132. At the molecular level, resistance of HCT116 PIK3CA-mut cells against TRAIL was reflected by impaired caspase-3 activation and we provide evidence for a crucial involvement of the E3-ligase X-linked inhibitor of apoptosis protein (XIAP) therein. Drugs interfering with the activity and/or the expression of XIAP, such as the second mitochondria-derived activator of caspase mimetic BV6 and mithramycin-A, completely restored TRAIL sensitivity in PIK3CA-mut-protected HCT116 cells independent of a functional mitochondrial cell death pathway. Importantly, proteasome inhibitors and XIAP-targeting agents also sensitized other CRC cell lines with mutated PIK3CA for TRAIL-induced cell death. Together, our data suggest that proteasome- or XIAP-targeting drugs offer a novel therapeutic approach to overcome TRAIL resistance in PIK3CA-mutated CRC.Colorectal cancer (CRC) is among the three most common malignancies worldwide.1 Pathophysiologically, CRC development been linked to the acquisition of oncogenic mutations such as alterations in the phosphoinositide-3 kinase (PI3K)/Akt pathway. PI3K converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate, thereby generating a docking site for pleckstrin homology domain containing proteins such as Akt/PKB. In CRC, approximately 10–20% of tumors exhibit mutations in the p110α catalytic subunit (predominantly H1047R and E545K substitutions in the PIK3CA gene), causing constitutive PI3K/Akt activation2 and worsening clinical outcome.3Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) emerged as a promising anti-cancer agent, capable of selectively inducing cell death in tumor cells.4 TRAIL binding to TRAIL receptor 1 (TRAIL-R1) or TRAIL-R2 induces formation of a chain-like death-inducing signaling complex (DISC). This allows stepwise caspase-8 activation and initiates a cascade of proteolytic cleavage events finally activating caspase-3 and triggering the execution phase of apoptosis.In so-called type I cells, initial caspase-8-mediated cleavage of caspase-3 efficiently triggers further autocatalytic caspase-3 processing to the mature heterotetrameric p12-p17 molecule. In type II cells, however, X-linked inhibitor of apoptosis protein (XIAP) inhibits processing of the caspase-3 p19 intermediate to the p17 subunit of the mature enzyme. Death receptor-induced apoptosis in these cells therefore relies on a mitochondria-dependent amplification loop that is triggered by caspase-8-mediated cleavage of the BH3-interacting domain death agonist (Bid) to tBid.5 tBid activates Bcl2-associated X protein (Bax) and Bcl2-antagonist/killer (Bak), enabling pore-formation in the outer mitochondrial membrane and release of apoptogenic factors such as cytochrome c and second mitochondria-derived activator of caspase (SMAC).6 The pro-apoptotic effect is at least twofold: cytochrome c associates with apoptotic protease-activating factor 1 (Apaf-1), forming a molecular scaffold for caspase-9 activation (‘apoptosome''), which in turn boosts downstream effector caspase activation. Synergistically, SMAC neutralizes cytosolic inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2 and especially XIAP.7High levels of IAPs or deregulated expression of Bcl2 family proteins are common in human cancers and often confer apoptosis resistance. This hampers efficacy of TRAIL-based therapies and to date, the therapeutic benefit of TRAIL in clinical trials is indeed rather limited.8We have recently found that mutant PIK3CA licensed TRAIL and CD95L to induce an amoeboid morphology in CRC cells, which is associated with increased invasiveness in vitro.9 Here, we show that targeting of the aberrantly active PI3K/Akt signaling pathway in TRAIL resistant, PIK3CA-mutated CRC cells only partially restored death receptor-triggered apoptosis induction. We identified impaired caspase-3 maturation by XIAP as the underlying molecular mechanism of TRAIL resistance in HCT116 PIK3CA-mut cells. Inhibition of XIAP or the proteasome efficiently restored TRAIL sensitivity irrespective of mitochondria-dependent death signal amplification. Together, our results indicate that targeting XIAP or the proteasome in CRC with PIK3CA mutations may offer a promising strategy to exploit the therapeutic potential of TRAIL in cancer therapy.  相似文献   

8.
Recently, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to be a potential candidate for cancer therapy. TRAIL induces apoptosis in various cancer cells but not in normal tissues. Here we show that HCT116 and SW480 cells with a deficient mitochondrial apoptotic pathway were resistant to TRAIL-induced apoptosis, whereas HCT116 and SW480 cells with a functional mitochondrial apoptotic pathway underwent apoptosis upon exposure to TRAIL. Surprisingly, TRAIL induced phenotypic changes in cells with a dysfunctional mitochondrial apoptotic pathway, including membrane blebbing and a transient loss of adhesion properties to the substratum. Accordingly, TRAIL stimulated the ability of these cells to migrate. This behavior was the consequence of a transient TRAIL-induced ROCK1 cleavage. In addition, we report that Bax-deficient HCT116 cells exposed to TRAIL for a prolonged period lost their sensitivity to TRAIL as a result of downregulation of TRAIL receptor expression, and became resistant to combination of TRAIL and other drugs such as MG-132 and bortezomib. These findings may have important consequences for TRAIL anti-cancer therapy.  相似文献   

9.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.  相似文献   

10.
Epidermal growth factor (EGF) protects against death receptor induced apoptosis in epithelial cells. Herein, we demonstrate that EGF protection against tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis is mediated by increased expression of the Bcl-2 family member myeloid cell leukemia 1 (Mcl-1). EGF increased the mRNA and protein levels of Mcl-1. Furthermore, expression of ErbB1 alone or in combination with ErbB2 in NIH3T3 cells up-regulates Mcl-1 following EGF treatment. In addition, up-regulation of Mcl-1 by EGF is mediated through AKT and NFkappaB activation since kinase inactive AKT and DeltaIkappaB effectively blocks this up-regulation. NFkappaB was also critical for the ability of EGF to prevent TRAIL induced apoptosis as a dominant negative IkappaB (DeltaIkappaB) blocked NFkappaB activation, and relieved EGF protection against TRAIL mediated mitochondrial cytochrome-c release and apoptosis. Finally, anti-sense oligonucleotides directed against Mcl-1 effectively reduced the protein levels of Mcl-1 and blocked EGF protection against TRAIL induced mitochondrial cytochrome-c release and apoptosis. Taken together, EGF signaling leads to increased Mcl-1 expression that is required for blockage of TRAIL induced apoptosis.  相似文献   

11.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising agent for medical applications because it induces apoptosis selectively in a variety of cancer cells without toxicity to normal human cells. However, its therapeutic potential has been limited by the existence of several cancer cells with TRAIL resistance. TRAIL resistance results from a variety of mechanisms, which occur at various points in the cellular signaling pathways. In this study, we demonstrate that ALS2CR7 (CDK15) can mediate resistance to TRAIL. We also demonstrate that cell viability of TRAIL sensitive HCT116 and MDA-MB-231 cells increased after TRAIL treatment in ALS2CR7 transfected cancer cells compared with vector transfected cancer cells. Furthermore, cell viability was decreased by TRAIL treatment after knockdown with ALS2CR7 siRNA in TRAIL resistant HT29 and MCF-7 cells. We also show that the activated form of apoptotic proteins such as caspase-3, -8 and -9 and PARP increased after TRAIL treatment in the control group, but decreased in the ALS2CR7 transfected group. The expression of survival proteins such as bcl2 and survivin in TRAIL sensitive cancer cells increased in the ALS2CR7 transfected group, but decreased in TRAIL resistant cancer cells treated with ALS2CR7 siRNA. Other survival proteins such as FLIP and XIAP were not affected. ALS2CR7 appears to bind with only survivin, and not bcl2. The phospho-survivin (Thr34) critical in drug resistance was increased by transfection with ALS2CR7, but the expression of death receptors such as DR4 and DR5 was not affected. ALS2CR7 did not bind with any of the death receptors in our study. In summary, our results suggest that ALS2CR7 confers TRAIL resistance to cancer cells via phosphorylation of survivin.  相似文献   

13.
The cytotoxic death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a tumor-specific agent under development as a novel anticancer therapeutic agent. However, some reports have demonstrated toxicity of certain TRAIL preparations toward human hepatocytes and keratinocytes through a caspase-dependent mechanism that involves activation of the extrinsic death pathway and Type II signaling through the mitochondria. We have isolated and purified both His-tagged protein and three versions of native recombinant human TRAIL protein from Escherichia coli. We found that 5 mm dithiothreitol in the purification process enhanced oligomerization of TRAIL and resulted in the formation of hyper-oligomerized TRAILs, including hexamers and nonomers with an extremely high potency in apoptosis induction. Although death-inducing signaling complex formation was much more efficient in cells treated with hyper-oligomerized TRAILs, this did not convert TRAIL-sensitive Type II HCT116 colon tumor cells to a Type I death pattern as judged by their continued sensitivity to a caspase 9 inhibitor. Moreover, TRAIL-resistant Type II Bax-null colon carcinoma cells were not converted to a TRAIL-sensitive Type I state by hyper-oligomerized TRAIL. Primary human esophageal epithelial 2 cells were found to be sensitive to all TRAIL preparations used, including trimer TRAIL. TRAIL-induced death in esophageal epithelial 2 cells was prevented by caspase 9 inhibition for up to 4 h after TRAIL exposure. This result suggests a possible therapeutic application of caspase 9 inhibition as a strategy to reverse TRAIL toxicity. Hyper-oligomerized TRAIL may be considered as an alternative agent for testing in clinical trials.  相似文献   

14.

Background

In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells.

Methods

Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate.

Results

We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571.

Conclusions

All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.  相似文献   

15.
Patients with malignant gliomas have a poor prognosis and new treatment paradigms are needed against this disease. TRAIL/Apo2L selectively induces apoptosis in malignant cells sparing normal cells and is hence of interest as a potential therapeutic agent against gliomas. To determine the factors that modulate sensitivity to TRAIL, we examined the differences in TRAIL-activated signaling pathways in glioma cells with variable sensitivities to the agent. Apoptosis in response to TRAIL was unrelated to DR5 expression or endogenous p53 status in a panel of 8 glioma cell lines. TRAIL activated the extrinsic (cleavage of caspase-8, caspase-3 and PARP) and mitochondrial apoptotic pathways and reduced FLIP levels. It also induced caspase-dependent JNK activation, which did not influence TRAIL-induced apoptosis. Because the pro-survival PI3K/Akt pathway is highly relevant to gliomas, we assessed whether Akt could protect against TRAIL-induced apoptosis. Pretreatment with SH-6, a novel Akt inhibitor, enhanced TRAIL-induced apoptosis, suggesting a protective role for Akt. Conversely, TRAIL induced caspase-dependent cleavage of Akt neutralizing its anti-apoptotic effects. These results demonstrate that TRAIL-induced apoptosis in gliomas involves both activation of death pathways and downregulation of survival pathways. Additional studies are warranted to determine the therapeutic potential of TRAIL against gliomas.Supported in part by the NIH grant PO1 CA55261  相似文献   

16.
We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.  相似文献   

17.
《Translational oncology》2020,13(4):100762
Despite the weak clinical efficacy of TRAIL death receptor agonists, a search is under way for new agents that more efficiently activate apoptotic signaling. We previously created a TRAIL DR5-selective variant DR5-B without affinity for the DR4, DcR1, DcR2, and OPG receptors and increased proapoptotic activity in tumor cells. Here we showed that DR5-B significantly inhibited tumor growth in HCT116 and Caco-2 but not in HT-29 xenografts. The antitumor activity of DR5-B was 2.5 times higher in HCT116 xenografts compared to TRAIL. DR5-B at a dose of 2 or 10 mg/kg/d for 10 days inhibited tumor growth in HCT116 xenografts by 26% or 50% respectively, and increased animal survival. Unexpectedly, DR5-B at a higher dose (25 mg/kg/d) inhibited tumor growth only during the first 8 days of drug exposure, while at the end of the monitoring, no effect or even slight stimulation of tumor growth was observed. The pharmacokinetic parameters of DR5-B were comparable to those of TRAIL, except that the half-life was 3.5 times higher. Thus, enhancing TRAIL selectivity to DR5 may increase both antitumor and proliferative activities depending on the concentration and administration regimens.  相似文献   

18.
In this report, we demonstrate that a 50% ethanol extract of the plant-derived product, Chios mastic gum (CMG), contains compounds which inhibit proliferation and induce death of HCT116 human colon cancer cells in vitro. CMG-treatment induces cell arrest at G(1), detachment of the cells from the substrate, activation of pro-caspases-8, -9 and -3, and causes several morphological changes typical of apoptosis in cell organelles. These events, furthermore, are time- and dose-dependent, but p53- and p21-independent. Apoptosis induction by CMG is not inhibited in HCT116 cell clones expressing high levels of the anti-apoptotic protein, Bcl-2, or dominant-negative FADD, thereby indicating that CMG induces cell death via a yet-to-be identified pathway, unrelated to the death receptor- and mitochondrion-dependent pathways. The findings presented here suggest that CMG (a) induces an anoikis form of cell death in HCT116 colon cancer cells that includes events associated with caspase-dependent pathways; and (b) might be developed into a chemotherapeutic agent for the treatment of human colon and other cancers.  相似文献   

19.
Kabsch K  Alonso A 《Journal of virology》2002,76(23):12162-12172
The effect of the human papillomavirus type 16 (HPV-16) E5 protein on apoptosis was investigated by using the polyclonal HaCaT-cell lines stably transfected either with E5 (HaCaT/E5) or the empty vector (HaCaT/pMSG) as reference. Apoptosis was triggered either by Fas ligand (FasL) or by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and was monitored by detection of cleavage of procaspase-8 and procaspase-3, as well as their substrate poly(ADP-ribose) polymerase (PARP). In contrast to the HaCaT/pMSG control cells we found that apoptosis induced by either of the two ligands is strongly suppressed in the E5-expressing keratinocytes. Fas expression is reduced by about a factor of two in HaCaT/E5 cells, which could be part of the mechanisms that protect the cells from FasL-induced apoptosis. For the TRAIL receptors, no such downregulation was observed. Here, E5 impairs the formation of the death-inducing signaling complex triggered by TRAIL. Apparently, E5 employs different mechanisms to inhibit death receptor signaling. This effect is not restricted to HaCaT/E5 cells since we found that the mouse fibroblast cell line A31-E5 is protected from TRAIL-induced apoptosis, as well but not the E5-lacking control cells A31-Neo. However, no such protection was observed upon FasL-induced apoptosis. Presumably, some of the antiapoptotic mechanisms employed by E5 of the human pathogenic HPV-16 are cell type specific. We propose that inhibition of ligand-mediated apoptosis in human keratinocytes is a primary function of the HPV-16 E5 protein needed to prevent apoptosis at early stages of viral infection.  相似文献   

20.
The Tax oncoprotein encoded by human T-cell leukemia virus induces both T-cell activation and apoptosis. The mechanism by which Tax induces apoptosis has remained unclear. Using genetically manipulated T-cell lines, we demonstrate that Tax-induced T-cell death is dependent on NF-kappaB signaling. Tax fails to induce apoptosis in T cells lacking IkappaB kinase gamma (IKKgamma), an essential component of the NF-kappaB signaling pathway. This defect was rescued when the mutant cells were reconstituted with exogenous IKKgamma. We further demonstrate that the Tax-induced T-cell death is mediated by TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), because this event can be effectively inhibited by a TRAIL-blocking antibody. Consistent with this functional aspect, Tax stimulates the expression of TRAIL mRNA. Finally, we provide genetic evidence demonstrating that the NF-kappaB signaling pathway is essential for TRAIL gene induction by both Tax and T-cell activation signals. These studies reveal a novel function of the NF-kappaB signaling pathway and suggest a key mechanism by which Tax induces T-cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号