首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ménétrey J  Cherfils J 《Proteins》1999,37(3):465-473
We report a novel crystal form of the small G protein Rap2A in complex with GTP which has no GTPase activity in the crystal. The asymmetric unit contains two complexes which show that a conserved switch I residue, Tyr 32, contributes an extra hydrogen bond to the gamma-phosphate of GTP as compared to related structures with GTP analogs. Since GTP is not hydrolyzed in the crystal, this interaction is unlikely to contribute to the intrinsic GTPase activity. The comparison of other G protein structures to the Rap2-GTP complex suggests that an equivalent interaction is likely to exist in their GTP form, whether unbound or bound to an effector. This interaction has to be released to allow the GAP-activated GTPase, and presumably the intrinsic GTPase activity as well. We also discuss the definition of the flexible regions and their hinges in the light of this structure and the expanding database of G protein structures. We propose that the switch I and switch II undergo either partial or complete disorder-to-order transitions according to their cellular status, thus defining a complex energy landscape comprising more than two conformational states. We observe in addition that the region connecting the switch I and switch II is flexible in Rap2 and other G proteins. This region may be important for protein-protein interactions and possibly behave as a conformational lever arm, as characterized for Arf. Taken together, these observations suggest that the structural mechanisms of small G proteins are significantly driven by entropy-based free energy changes.  相似文献   

2.
The Rap family of small GTP-binding proteins is composed by four different members: Rap1A, Rap1B, Rap2A and Rap2B. In this work we report the identification and characterization of a fifth member of this family of small GTPases. This new protein is highly homologous to Rap2A and Rap2B, binds labeled GTP on nitrocellulose, and is recognized by a specific anti-Rap2 antibody, but not by an anti-Rap1 antibody. The protein has thus been named Rap2C. Binding of GTP to recombinant purified Rap2C was Mg(2+)-dependent. However, accurate comparison of the kinetics of nucleotide binding and release revealed that Rap2C bound GTP less efficiently and possessed slower rate of GDP release compared to the highly homologous Rap2B. Moreover, in the presence of Mg(2+), the relative affinity of Rap2C for GTP was only about twofold higher than that for GDP, while, under the same conditions, Rap2B was able to bind GTP with about sevenfold higher affinity than GDP. When expressed in eukaryotic cells, Rap2C localized at the plasma membrane, as dictated by the presence of a CAAX motif at the C-terminus. We found that Rap2C represented the predominant Rap2 protein expressed in circulating mononuclear leukocytes, but was not present in platelets. Importantly, Rap2C was found to be expressed in human megakaryocytes, suggesting that the protein may be down-regulated during platelets generation. This work demonstrates that Rap2C is a new member of the Rap2 subfamily of proteins, able to bind guanine nucleotides with peculiar properties, and differently expressed by various hematopoietic subsets. This new protein may therefore contribute to the still poorly clarified cellular events regulated by this subfamily of GTP-binding proteins.  相似文献   

3.
Normal human rap1A and 35A rap1A (which encodes a protein with a Thr-35----Ala mutation) were cloned into a baculovirus transfer vector and expressed in Sf9 insect cells. The resulting proteins were purified, and their nucleotide binding, GTPase activities, and responsiveness to GTPase-activating proteins (GAPs) were characterized and compared with those of Rap1 purified from human neutrophils. Recombinant wild-type Rap1A bound GTP gamma S, GTP, and GDP with affinities similar to those observed for neutrophil Rap1 protein. The rate of exchange of GTP by Rap1 without Mg2+ was much slower than that by Ras. The basal GTPase activities by both recombinant proteins were lower than that observed with the neutrophil Rap1, but the GTPase activity of the neutrophil and wild-type recombinant Rap1 proteins could be stimulated to similar levels by Rap-GAP activity in neutrophil cytosol. In contrast to wild-type Rap1A, the GTPase activity of 35A Rap was unresponsive to Rap-GAP stimulation. Neither recombinant Rap1A nor neutrophil Rap1 protein GTPase activity could be stimulated by recombinant Ras-GAP at a concentration 25-fold higher than that required to hydrolyze 50% of H-Ras-bound GTP under similar conditions. These results suggest that the putative effector domains (amino acids 32 to 40) shared between Rap1 and Ras are functionally similar and interact with their respective GAPs. However, although Rap1 and Ras are identical in this region, secondary structure or additional regions must confer the ability to respond to GAPs.  相似文献   

4.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

5.
Neurotrophins, such as NGF and BDNF, induce sustained activation of Rap1 small G protein and ERK, which are essential for neurite outgrowth. We show involvement of a GDP/GTP exchange factor (GEF) for Rap1, PDZ-GEF1, in these processes. PDZ-GEF1 is activated by GTP-Rap1 via a positive feedback mechanism. Upon NGF binding, the TrkA neurotrophin receptor is internalized from the cell surface, passes through early endosomes, and arrives in late endosomes. A tetrameric complex forms between PDZ-GEF1, synaptic scaffolding molecule and ankyrin repeat-rich membrane spanning protein which interacts directly with the TrkA receptor. At late endosomes, the complex induces sustained activation of Rap1 and ERK, resulting in neurite outgrowth. In cultured rat hippocampal neurons, PDZ-GEF1 is recruited to late endosomes in a BDNF-dependent manner involved in BDNF-induced neurite outgrowth. Thus, the interaction of PDZ-GEF1 with an internalized neurotrophin receptor transported to late endosomes induces sustained activation of both Rap1 and ERK and neurite outgrowth.  相似文献   

6.
G(z) is a member of the G(i) family of trimeric G proteins whose primary role in cell physiology is still unknown. In an ongoing effort to elucidate the cellular functions of G(z), the yeast two-hybrid system was employed to identify proteins that specifically interact with a mutationally activated form of Galpha(z). One of the molecules uncovered in this screen was Rap1GAP, a previously identified protein that specifically stimulates GTP hydrolytic activity of the monomeric G protein Rap1 and thus is believed to function as a down-regulator of Rap1 signaling. Like G(z), the precise role of Rap1 in cell physiology is poorly understood. Biochemical analysis using purified recombinant proteins revealed that the physical interaction between Galpha(z) and Rap1GAP blocks the ability of RGSs (regulators of G protein signaling) to stimulate GTP hydrolysis of the alpha subunit, and also attenuates the ability of activated Galpha(z) to inhibit adenylyl cyclase. Structure-function analyses indicate that the first 74 amino-terminal residues of Rap1GAP, a region distinct from the catalytic core domain responsible for the GAP activity toward Rap1, is required for this interaction. Co-precipitation assays revealed that Galpha(z), Rap1GAP, and Rap1 can form a stable complex. These data suggest that Rap1GAP acts as a signal integrator to somehow coordinate and/or integrate G(z) signaling and Rap1 signaling in cells.  相似文献   

7.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

8.
The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.  相似文献   

9.
The activation of heterotrimeric G proteins induced by G protein coupled receptors (GPCR) is generally believed to occur by a GDP/GTP exchange at the G protein α -subunit. Nevertheless, nucleoside diphosphate kinase (NDPK) and the β-subunit of G proteins (Gβ) participate in G protein activation by phosphate transfer reactions leading to the formation of GTP from GDP. Recent work elucidated the role of these reactions. Apparently, the NDPK isoform B (NDPK B) forms a complex with β; γ; dimers in which NDPK B acts as a histidine kinase phosphorylating G#x03B2; at His266. Out of this high energetic phosphoamidate bond the phosphate can be transferred specifically onto GDP. The formed GTP binds to the G protein α -subunit and thus activates the respective G protein. Evidence is presented, that this process occurs independent of the classical GPCR-induced GTP/GTP exchange und thus contributes, e.g. to the regulation of basal cAMP synthesis in cells.  相似文献   

10.
The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.  相似文献   

11.
GTP hydrolysis by small GTP binding proteins of the Ras superfamily is a universal reaction that controls multiple cellular regulations. Its enzymic mechanism has been the subject of long-standing debates as to the existence/identity of the general base and the electronic nature of its transition state. Here we report the high-resolution crystal structure of a small GTP binding protein, Rab11, solved in complex with GDP and Pi. Unexpectedly, a Pi oxygen and the GDP-cleaved oxygen are located less than 2.5 A apart, suggesting that they share a proton, likely in the form of a low-barrier hydrogen bond. This implies that the gamma-phosphate of GTP was protonated; hence, that GTP acts as a general base. Furthermore, this interaction should establish at, and stabilize, the transition state. Altogether, we propose a revised model for the GTPase reaction that should reconcile earlier models into a unique substrate-assisted mechanism.  相似文献   

12.
A direct interaction of alpha beta gamma trimeric GTP binding proteins (G proteins; G0 and Gs) with nucleoside diphosphate kinase (NDP kinase) was investigated with homogeneously purified proteins. There was a progressive release of 32Pi from [gamma-32P]ATP when GDP-bound G0 was incubated together with NDP kinase. The Pi release induced by the interaction of G0 with NDP kinase was not accompanied by the dissociation of GDP bound to the alpha-subunit of G0. This was a sharp contrast to G protein-catalyzed GTP hydrolysis observed with GTP as the substrate; the dissociation of bound GDP was essentially required for the following binding of the substrate, GTP, to be hydrolyzed. A kinetic analysis displayed different properties for the substrate of NDP kinase between free GDP and G protein-bound GDP. NDP kinase-dependent phosphorylation of GDP on G0 was indeed demonstrated with adenosine 5'-(3-O-thio)triphosphate as the phosphate donor; there was a formation of guanosine 5'-(3-O-thio)triphosphate-bound G0 from the ATP analogue. Moreover, purified Gs was readily ADP-ribosylated by cholera toxin in the presence of NDP kinase, ATP, and an ADP-ribosylation factor, also suggesting that the nucleotide form on Gs was certainly GTP. These results indicate that NDP kinase can transfer the gamma-phosphate of ATP directly to GDP bound to G proteins and that this phosphorylation results in the activation of the signal-coupling proteins. A possible role of the new activation mechanism of G proteins is discussed in comparison with the previously characterized GDP-GTP exchange pathway by the agonist-receptor complex.  相似文献   

13.
Hansson S  Singh R  Gudkov AT  Liljas A  Logan DT 《FEBS letters》2005,579(20):4492-4497
Elongation factor G (EF-G) is a G protein factor that catalyzes the translocation step in protein synthesis on the ribosome. Its GTP conformation in the absence of the ribosome is currently unknown. We present the structure of a mutant EF-G (T84A) in complex with the non-hydrolysable GTP analogue GDPNP. The crystal structure provides a first insight into conformational changes induced in EF-G by GTP. Comparison of this structure with that of EF-G in complex with GDP suggests that the GTP and GDP conformations in solution are very similar and that the major contribution to the active GTPase conformation, which is quite different, therefore comes from its interaction with the ribosome.  相似文献   

14.
About 15% of the total GTP-binding proteins (G proteins) of rat liver homogenate was found in the microsomes-Golgi complex fraction. From this fraction, we purified to near homogeneity and characterized a G protein with a Mr value of 24,000 (24K G). 24K G specifically bound guanosine 5'-(3-Q-thio) triphosphate (GTP gamma S), GTP and GDP with a Kd value for GTP gamma S of about 30 nM. 24K G bound maximally about 0.7 mol of GTP gamma S/mol of protein. 24K G hydrolyzed GTP to liberate Pi with a turnover number of about 0.008 min-1. 24K G was not copurified with the beta gamma subunit of heterotrimeric G proteins. The partial amino acid sequences of 24K G revealed that this protein was a novel small G protein.  相似文献   

15.
Hepatocyte growth factor (HGF; scatter factor) is a multipotent protein with mitogenic, motogenic, and developmental functions. Upon activation, the HGF-receptor c-Met binds and phosphorylates the multisite docking protein Gab1. Besides binding motifs for phosphatidylinositol 3-kinase and Grb2, Gab 1 contains multiple Tyr-X-X-Pro (YXXP) motifs which, when phosphorylated, are potential binding sites for the adapter proteins c-Crk and Crk-like (CRKL). Stimulation of human embryonic kidney cells (HEK293) with HGF leads to Gab1 association with CRKL. The Gab1-CRKL interaction requires both, the SH2 domain of CRKL and the region containing the YXXP motifs in Gab1. CRKL binds via its first SH3 domain to several downstream signal transducers, including C3G an activator of the small GTPase Rap1. Indeed, Rap1 was rapidly activated after HGF stimulation of HEK293 cells. Rap1 activation through HGF was suppressed through transfection of a truncated C3G protein which only contains the SH3-binding motifs of C3G. Transfection of nonmutated Gab1 led to a strong increase of Rap1.GTP in the absence of HGF. In contrast, transfection of the GabDeltaYXXP mutant abolished the elevation of Rap1.GTP by HGF. A replating assay indicated that HGF decreases the adhesion of HEK293 cells. The results presented here delineate a novel signaling pathway from HGF to the GTPase Rap1 which depends on the interaction of the adapter protein CRKL with the exchange factor C3G and could be linked to cell migration.  相似文献   

16.
A single amino acid substitution (Asp to Asn) at position 138 of Escherichia coli elongation factor Tu (EF-Tu) was introduced in the tufA gene clone by oligonucleotide site-directed mutagenesis. The mutated tufA gene was then expressed in maxicells. The properties of [35S]methionine-labeled mutant and wild type EF-Tu were compared by in vitro assays. The Asn-138 mutation greatly reduced the protein's affinity for GDP; however, this mutation dramatically increased the protein's affinity for xanthosine 5'-diphosphate. The mutant protein forms a stable complex with Phe-tRNA and xanthosine 5'-triphosphate, which binds to ribosomes, whereas it does not form a complex with Phe-tRNA and GTP (10 microM). These results suggest that in EF-Tu.nucleoside diphosphate complexes, amino acid residue 138 must interact with the substituent on C-2 of the purine ring. Thus, in wild type EF-Tu, Asp-138 would hydrogen bond to the 2-amino group of GDP, and in the mutant EF-Tu, Asn-138 would form an equivalent hydrogen bond with the 2-carbonyl group of xanthosine 5'-diphosphate. Aspartic acid 138 is conserved in the homologous sequences of all GTP regulatory proteins. This mutation would allow one to specifically alter the nucleotide specificity of other GTP regulatory proteins.  相似文献   

17.
J E Allende 《FASEB journal》1988,2(8):2356-2367
G proteins that serve to transduce external signals in membranes share with protein synthesis factors and tubulin structural and functional features that are common to proteins that participate in reversible GTP-mediated macromolecular interactions. These proteins can bind GTP and GDP with high affinity, adopting different structures depending on whether they are complexed with the nucleotide diphosphate or triphosphate. The GTP.protein complex has high affinity for an acceptor macromolecule (or complex of macromolecules) and interacts with it, affecting its activity. These GTP-binding proteins also possess an intrinsic GTPase activity that is generally stimulated by its interaction with the acceptor. The GTPase activity converts the bound GTP to GDP, switching the configuration of the complexed protein to one of low affinity for the acceptor and causing its dissociation. The protein.GDP complex must exchange its GDP for GTP to allow the protein to acquire the high-affinity structure that can cycle back to the acceptor macromolecule. This exchange of guanine nucleotides requires in several instances exchange factors that can regulate the whole process. A detailed comparison of the features of the different systems is made with respect to structural similarities, regulation by protein phosphorylation, ADP ribosylation by bacterial toxins, and requirements for exchange factors. It is also proposed that there is a similar mechanism that involves ATP/ADP-binding proteins.  相似文献   

18.
Arf1 is a small G protein involved in vesicular trafficking, and although it is only distantly related to Ras, it adopts a similar three-dimensional structure. In the present work, we study Arf1 bound to GDP and GTP and its interactions with one of its guanosine nucleotide exchange factors, ARNO-Sec7. The (31)P NMR spectra of Arf1.GDP.Mg(2+) and Arf1.GTP.Mg(2+) share the general features typical for all small G proteins studied so far. Especially, the beta-phosphate resonances of the bound nucleotide are shifted strongly downfield compared with the resonance positions of the free magnesium complexes of GDP and GTP. However, no evidence for an equilibrium between two conformational states of Arf1.GDP.Mg(2+) or Arf1.GTP.Mg(2+) could be observed as it was described earlier for Ras and Ran. Glu(156) of ARNO-Sec7 has been suggested to play as "glutamic acid finger" an important role in the nucleotide exchange mechanism. In the millimolar concentration range used in the NMR experiments, wild type ARNO-Sec7 and ARNO-Sec7(E156D) do weakly interact with Arf1.GDP.Mg(2+) but do not form a strong complex with magnesium-free Arf1.GDP. Only wild type ARNO-Sec7 competes weakly with GDP on Arf1.GDP.Mg(2+) and leads to a release of GDP when added to the solution. The catalytically inactive mutants ARNO-Sec7(E156A) and ARNO-Sec7(E156K) induce a release of magnesium from Arf1.GDP.Mg(2+) but do not promote GDP release. In addition, ARNO-Sec7 does not interact or only very weakly interacts with the GTP-bound form of Arf1, opposite to the observation made earlier for Ran, where the nucleotide exchange factor RCC1 forms a complex with Ran.GTP.Mg(2+) and is able to displace the bound GTP.  相似文献   

19.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号