首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Vascular permeability is a hallmark response to the main angiogenic factor VEGF-A and we have previously described a reduction of this response in Shb knockout mice. To characterize the molecular mechanisms responsible for this effect, endothelial cells were isolated from lungs and analyzed in vitro. Shb deficient endothelial cells exhibited less migration in a scratch wound-healing assay both under basal conditions and after vascular endothelial growth factor-A (VEGF-A) stimulation, suggesting a functional impairment of these cells in vitro. Staining for VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR-2) showed co-localization in adherens junctions and in intracellular sites such as the perinuclear region in wild-type and Shb knockout cells. VEGF-A decreased the VE-cadherin/VEGFR-2 co-localization in membrane structures resembling adherens junctions in wild-type cells whereas no such response was noted in the Shb knockout cells. VE-cadherin/VEGFR-2 co-localization was also recorded using spinning-disk confocal microscopy and VEGF-A caused a reduced association in the wild-type cells whereas the opposite pattern was observed in the Shb knockout cells. The latter expressed slightly more of cell surface VEGFR-2. VEGF-A stimulated extracellular-signal regulated kinase, Akt and Rac1 activities in the wild-type cells whereas no such responses were noted in the knockout cells. We conclude that aberrant signaling characteristics with respect to ERK, Akt and Rac1 are likely explanations for the observed altered pattern of VE-cadherin/VEGFR-2 association. The latter is important for understanding the reduced in vivo vascular permeability response in Shb knockout mice, a phenomenon that has patho-physiological relevance.  相似文献   

3.
4.
Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.  相似文献   

5.
A mouse model of hypertrophic cardiomyopathy (HCM) was created by expression of a cardiac alpha-myosin transgene including the R(403)Q mutation and a deletion of a segment of the actin-binding domain. HCM mice show early histopathology and hypertrophy, with progressive hypertrophy in females and ventricular dilation in older males. To test the hypothesis that dilated cardiomyopathy (DCM) is part of the pathological spectrum of HCM, we studied chamber morphology, exercise tolerance, hemodynamics, isolated heart function, adrenergic sensitivity, and embryonic gene expression in 8- to 11-mo-old male transgenic animals. Significantly impaired exercise tolerance and both systolic and diastolic dysfunction were seen in vivo. Contraction and relaxation parameters of isolated hearts were also decreased, and lusitropic responsiveness to the beta-adrenergic agonist isoproterenol was modestly reduced. Myocardial levels of the G protein-coupled beta-adrenergic receptor kinase 1 (beta-ARK1) were increased by more than twofold over controls, and total beta-ARK1 activity was also significantly elevated. Induction of fetal gene expression was also observed in transgenic hearts. We conclude that transgenic male animals have undergone cardiac decompensation resulting in a DCM phenotype. This supports the idea that HCM and DCM may be part of a pathological continuum rather than independent diseases.  相似文献   

6.
7.
Interleukin-1 (IL-1) is a potent regulator of cell proliferation, inflammation, and contraction of cardiovascular cells. It has been proposed that the IL-1/IL-1ra (IL-1 receptor antagonist) ratio influences these functions. Other members of the IL-1 family and the related caspase-1 also contribute to regulation of IL-1-mediated functions. We determined the mRNA expression of caspase-1, caspase-3, IL-1alpha , IL-1beta , IL-18, IL-1 receptor type I (IL-1-RI), and IL-1ra in left ventricle tissue of hearts from patients with ischemic or dilated cardiomyopathy (ICM or DCM) and in control tissues from unused donor transplant hearts in RT-PCR experiments. We show that the expression of caspase-1, caspase-3, IL-1beta , and IL-1-RI mRNA was not different between patients and control tissues. Furthermore, we did not find detectable amounts of IL-1alpha mRNA in any of these adult myocardial tissues. On the other hand, expression of IL-18 RNA was lower in myocardium of both patient groups compared with control hearts. Furthermore, IL-1ra mRNA expression was significantly lower in tissues of DCM patients compared with ICM patients and controls. This was in line with a trend towards lower IL-1ra protein levels in myocardial tissues of DCM patients. In contrast with the adult tissues discussed above, which did not express IL-1alpha mRNA, commercially available human fetal tissue expressed IL-1alpha mRNA. On the other hand IL-1beta mRNA was present in fetal and in adult human heart tissue. Our data provide evidence for an altered ratio of IL-1/IL-1ra in DCM patients. This dysregulation may contribute to pathogenesis and/or progression of heart disease by modulating the otherwise balanced IL-1-mediated functions in cardiovascular cells.  相似文献   

8.
The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.  相似文献   

9.
10.
11.
Mora A  Sakamoto K  McManus EJ  Alessi DR 《FEBS letters》2005,579(17):3632-3638
In order to investigate the importance of the PDK1-PKB-GSK3 signalling network in regulating glycogen synthase (GS) in the heart, we have employed tissue specific conditional knockout mice lacking PDK1 in muscle (mPDK1-/-), as well as knockin mice in which the protein kinase B (PKB) phosphorylation site on glycogen synthase kinase-3alpha (GSK3alpha) (Ser21) and GSK3beta (Ser9) is changed to Ala. We demonstrate that in hearts from mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, insulin failed to stimulate the activity of GS or induce its dephosphorylation at residues that are phosphorylated by GSK3. We also establish that in the heart, both GSK3 isoforms participate in the regulation of GS, with GSK3beta playing a more prominent role. This contrasts with skeletal muscle where GSK3beta is the major regulator of insulin-induced GS activity. Despite the inability of insulin to stimulate glycogen synthesis in hearts from the mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, these animals possessed normal levels of cardiac glycogen, demonstrating that total glycogen levels are regulated independently of insulin's ability to stimulate GS in the heart and that mechanisms such as allosteric activation of GS by glucose-6-phosphate and/or activation of GS by muscle contraction, could operate to maintain normal glycogen levels in these mice. We also demonstrate that in cardiomyocytes derived from the mPDK1-/- hearts, although the levels of glucose transporter type 4 (GLUT4) are increased 2-fold, insulin failed to stimulate glucose uptake, providing genetic evidence that PDK1 plays a crucial role in enabling insulin to promote glucose uptake in cardiac muscle.  相似文献   

12.
13.
14.
Vascular endothelial growth factor A (VEGF-A) is a potent inducer of angiogenesis. We now show that VEGF-A-induced adhesion and migration of human endothelial cells are dependent on the integrin alpha9beta1 and that VEGF-A is a direct ligand for this integrin. Adhesion and migration of these cells on the 165 and 121 isoforms of VEGF-A depend on cooperative input from alpha9beta1 and the cognate receptor for VEGF-A, VEGF receptor 2 (VEGF-R2). Unlike alpha3beta1or alphavbeta3 integrins, alpha9beta1 was also found to bind the 121 isoform of VEGF-A. This interaction appears to be biologically significant, because alpha9beta1-blocking antibody dramatically and specifically inhibited angiogenesis induced by VEGF-A165 or -121. Together with our previous findings that alpha9beta1 directly binds to VEGF-C and -D and contributes to lymphangiogenesis, these results identify the integrin alpha9beta1 as a potential pharmacotherapeutic target for inhibition of pathogenic angiogenesis and lymphangiogenesis.  相似文献   

15.
16.
17.
18.
19.
Cardiac hypertrophy and function were studied 6 wk after constriction of the thoracic aorta (TAC) in transgenic (TG) mice expressing constitutively active mutant alpha(1B)-adrenergic receptors (ARs) in the heart. Hearts from sham-operated TG animals and nontransgenic littermates (WT) were similar in size, but hearts from TAC/TG mice were larger than those from TAC/WT mice, and atrial natriuretic peptide mRNA expression was also higher. Lung weight was markedly increased in TAC/TG animals, and the incidence of left atrial thrombus formation was significantly higher. Ventricular contractility in anesthetized animals, although it was increased in TAC/WT hearts, was unchanged in TAC/TG hearts, implying cardiac decompensation and progression to failure in TG mice. There was no increase in alpha(1A)-AR mRNA expression in TAC/WT hearts, and expression was significantly reduced in TAC/TG hearts. These findings show that cardiac expression of constitutively actively mutant alpha(1B)-ARs is detrimental in terms of hypertrophy and cardiac function after pressure overload and that increased alpha(1A)-AR mRNA expression is not a feature of the hypertrophic response in this murine model.  相似文献   

20.
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号