共查询到11条相似文献,搜索用时 78 毫秒
1.
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达 总被引:1,自引:0,他引:1
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达 贾向东1,陈喜文1,陈德富1,陈洁2 (1.南开大学生命科学学院,生物活性材料教育部重点实验室,天津300071;2.湖南怀化市铁路第一中学,怀化418000) 摘要:谷胱甘肽S-转移酶Zeta类(GSTZ)是一种重要的多功能酶,与细胞生化代谢、环境净化等密切相关。将拟南芥、甘蓝型油菜品系陕2B与垦C1的GSTZ基因克隆到大肠杆菌—酿酒酵母穿梭表达载体pYES2的多克隆位点,筛选到重组子后,提取重组质粒并将其转入酿酒酵母营养缺陷型菌株INCSc1细胞中,经SC-U培养基选择得到重组酵母Y2At、Y2BnB和Y2BnC。重组酵母在含棉子糖和半乳糖的诱导培养基中,表达出了具有二氯乙酸脱氯活力的谷胱甘肽S-转移酶Zeta类,且主要以可溶状态存在于酵母细胞中。不同碳源比较发现,使用半乳糖为唯一碳源时,与棉子糖和半乳糖共同使用相比,酵母生长虽受到轻微影响,但表达的GSTZ比活力几乎不受任何影响。0~96h诱导时间的优化实验表明,36h诱导下呈现最高比活力。同时也对不同GSTZ的Km值进行了比较。 相似文献
2.
3.
The maleylpyruvate isomerase NagL from Ralstonia sp. strain U2, which has been structurally characterized previously, catalyzes the isomerization of maleylpyruvate to fumarylpyruvate. It belongs to the class zeta glutathione S-transferases (GSTZs), part of the cytosolic GST family (cGSTs). In this study, site-directed mutagenesis was conducted to probe the functions of 13 putative active site residues. Steady-state kinetic information for mutants in the reduced glutathione (GSH) binding site, suggested that (a) Gln64 and Asp102 interact directly with the glutamyl moiety of glutathione, (b) Gln49 and Gln64 are involved in a potential electron-sharing network that influences the ionization of the GSH thiol. The information also suggests that (c) His38, Asn108 and Arg109 interact with the GSH glycine moiety, (d) His104 has a role in the ionization of the GSH sulfur and the stabilization of the maleyl terminal carboxyl group in the reaction intermediate and (e) Arg110 influences the electron distribution in the active site and therefore the ionization of the GSH thiolate. Kinetic data for mutants altered in the substrate-binding site imply that (a) Arg8 and Arg176 are critical for maleylpyruvate orientation and enolization, and (b) Arg109 (exclusive to NagL) participates in kcat regulation. Surprisingly, the T11A mutant had a decreased GSH Km value, whereas little impact on maleylpyruvate kinetics was observed, suggesting that this residue plays an important role in GSH binding. An evolutionary trend in this residue appears to have developed not only in prokaryotic and eukaryotic GSTZs, but also among the wider class of cGSTs. 相似文献
4.
A cDNA clone obtained from Arabidopsis leaf RNA encodes a 24 kDa protein with homology to glutathione S-transferases (GST). It is most homologous with a tobacco GST (57% identity). In Arabidopsis, expression of GST mRNA is regulated by ethylene. Exposure of plants to ethylene increased the abundance of GST mRNA, while treatment with norbornadiene had the reverse effect. Ethylene had no effect on the mRNA level in ethylene-insensitive etr1 plants. The abundance of this mRNA increased with the age of plants. DNA hybridizations indicate that GSTs are encoded by a large multigene family in Arabidopsis. 相似文献
5.
Ruth R. Finkelstein 《Molecular & general genetics : MGG》1993,238(3):401-408
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth. 相似文献
6.
Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana 总被引:1,自引:0,他引:1
Dianne A. M. van der Kop Monique Schuyer Ben Scheres Bert J. van der Zaal Paul J. J. Hooykaas 《Plant molecular biology》1996,30(4):839-844
Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions of the Arabidopsis genes were highly homologous to each other and to the coding region of the tobacco gene but distinct from the GST genes that have been isolated from arabidopsis thusfar. Overexpression of a cDNA clone in Escherichia coli revealed that the AT103-1A protein had GST activity. 相似文献
7.
Summary Data presented in this paper deal with a further molecular characterization of 2 out of 32 EMS-induced Arabidopsis ADH null mutants that we isolated previously. In order to localize and characterize each mutation at the molecular level, we have cloned and completely sequenced the R002 and R006 null mutant alleles. For mutant R002, which does not contain any detectable levels of ADH protein and mRNA, we have found that the mutation is due to a single C to T base pair substitution in the reading frame; this leads to the incorporation of a TAG stop codon (amber nonsense mutation). For mutant R006, which contains normal levels of inactive protein and mRNA levels, we found a G to A base pair transition. This gives rise to a Cys to Tyr amino acid substitution in the active site of the ADH enzyme.Abbreviations CRM
cross-reacting material
- 2,4-D
2,4-dichlorophenoxyacetic acid
- EMS
ethylmethanesulfonate 相似文献
8.
Plant glutathione S -transferases (GSTs) are a large group of multifunctional proteins that are induced by diverse stimuli. Using proteomic approaches we identified 20 GSTs at the protein level in Arabidopsis cell culture with a combination of GST antibody detection, LC-MS/MS analysis of 23-30 kDa proteins and glutathione-affinity chromatography. GSTs identified were from phi, tau, theta, zeta and DHAR sub-sections of the GST superfamily of 53 members. We have uncovered preliminary evidence for post-translational modifications of plant GSTs and show that phosphorylation is unlikely to be responsible. Detailed analysis of GST expression in response to treatment with 0.01-1 mM of the plant defence signal salicylic acid (SA) uncovered some interesting features. Firstly, GSTs appear to display class-specific concentration-dependent SA induction profiles highlighting differences between the large, plant specific phi and tau classes. Secondly, different members of the same class, while sharing similar SA dose responses, may display differences in terms of magnitude and timing of induction, further highlighting the breadth of GST gene regulation. Thirdly, closely related members of the same class ( GSTF6 and GSTF7 ), arising via tandem duplication, may be regulated differently in terms of basal expression levels and also magnitude of induction raising questions about the role of subfunctionalisation within this family. Our results reveal that GSTs exhibit class specific responses to SA treatment suggesting that several mechanisms are acting to induce GSTs upon SA treatment and hinting at class-specific functions for this large and important, yet still relatively elusive gene family. 相似文献
9.
铝胁迫能影响根尖生长素的运输,这与生长素运输载体密切相关,PIN2作为根尖生长素的运输蛋白,其独特的组织定位可能诱导PIN2蛋白参与了铝调节生长素的运输过程。该研究以拟南芥PIN2缺失突变体( pin2)、PIN2□∷□GFP融合体及其野生型( WT)为材料,应用激光扫描共聚焦显微技术,研究铝处理对拟南芥根尖生长素运输蛋白PIN2的表达活性、蛋白在组织及亚细胞水平分布及其对铝内置化作用的影响。结果表明:短期铝处理或低铝浓度能明显增加拟南芥根尖细胞PIN2蛋白表达活性,而长期铝处理或高铝浓度抑制其表达活性;以100μmol?L-1 AlCl3处理4 h的蛋白表达活性最高。蛋白印迹反应发现,铝处理促进PIN2蛋白在细胞膜上累积,减少胞内囊泡中PIN2蛋白的含量;囊泡运输抑制剂( BFA)能抑制铝诱导PIN2蛋白的分配。铝胁迫增加拟南芥根尖细胞H2 O2累积,pin2的H2 O2累积量大于WT,而相对根长小于WT。 Morin染色结果显示,pin2的铝内置化显著小于WT。上述研究表明,PIN2蛋白在100μmol?L-1 AlCl3处理条件下活性最高,细胞膜累积程度加强,铝内置化能力增强,从而调节根系的生长发育。该研究结果进一步为铝抑制生长素的运输机制提供了理论基础。 相似文献
10.
Ian Sofian Yunus Amaury Cazenave-Gassiot Yu-chi Liu Ying-Chen Lin Markus R Wenk Yuki Nakamura 《Plant signaling & behavior》2015,10(8)
Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana. 相似文献
11.
Ludwig-Müller J 《Journal of plant physiology》2007,164(1):47-59
Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. 相似文献