首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.  相似文献   

2.
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the -subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells. clathrin assembly lympoid myeloid leukemia; kidney epithelial cells; epsin NH2-terminal homology domain; DLL repeats; clathrin; AP-2  相似文献   

3.
Light-chain-independent binding of adaptors, AP180, and auxilin to clathrin   总被引:5,自引:0,他引:5  
R Lindner  E Ungewickell 《Biochemistry》1991,30(37):9097-9101
Binding of coated vesicle assembly proteins to clathrin causes it to assemble into regular coat structures. The assembly protein fraction of bovine brain coated vesicles comprises AP180, auxilin, and HA1 and HA2 adaptors. Clathrin heavy chains, separated from their light chains, polymerize with unimpaired efficiency when assembly proteins are added. The reassembled coats were purified by sucrose gradient centrifugation and examined for composition by SDS-PAGE and immunoblotting. We found that all four major coat proteins are incorporated in the presence and absence of light chains. Moreover, each of the purified coat proteins is able to associate directly with clathrin heavy chains in preassembled cages as efficiently as with intact clathrin. We conclude that light chains are not essential for the interaction of AP180, auxilin, and HA1 and HA2 with clathrin.  相似文献   

4.
Although genetic and biochemical studies suggest a role for Eps15 homology domain containing proteins in clathrin-mediated endocytosis, the specific functions of these proteins have been elusive. Eps15 is found at the growing edges of clathrin-coated pits, leading to the hypothesis that it participates in the formation of coated vesicles. We have evaluated this hypothesis by examining the effect of Eps15 on clathrin assembly. We found that although Eps15 has no intrinsic ability to assemble clathrin, it potently stimulates the ability of the clathrin adaptor protein, AP180, to assemble clathrin at physiological pH. We have also defined the binding sites for Eps15 on squid AP180. These sites contain an NPF motif, and peptides derived from these binding sites inhibit the ability of Eps15 to stimulate clathrin assembly in vitro. Furthermore, when injected into squid giant presynaptic nerve terminals, these peptides inhibit the formation of clathrin-coated pits and coated vesicles during synaptic vesicle endocytosis. This is consistent with the hypothesis that Eps15 regulates clathrin coat assembly in vivo, and indicates that interactions between Eps15 homology domains and NPF motifs are involved in clathrin-coated vesicle formation during synaptic vesicle recycling.  相似文献   

5.
Uncoating of clathrin-coated vesicles requires the J-domain protein auxilin for targeting hsc70 to the clathrin coats and for stimulating the hsc70 ATPase activity. This results in the release of hsc70-complexed clathrin triskelia and concomitant dissociation of the coat. To understand the complex role of auxilin in uncoating and clathrin assembly in more detail, we analyzed the molecular organization of its clathrin-binding domain (amino acids 547-813). CD spectroscopy of auxilin fragments revealed that the clathrin-binding domain is almost completely disordered in solution. By systematic mapping using synthetic peptides and by site-directed mutagenesis, we identified short peptide sequences involved in clathrin heavy chain and AP-2 binding and evaluated their significance for the function of auxilin. Some of the binding determinants, including those containing sequences 674DPF and 636WDW, showed dual specificity for both clathrin and AP-2. In contrast, the two DLL motifs within the clathrin-binding domain were exclusively involved in clathrin binding. Surprisingly, they interacted not only with the N-terminal domain of the heavy chain, but also with the distal domain. Moreover, both DLL peptides proved to be essential for clathrin assembly and uncoating. In addition, we found that the motif 726NWQ is required for efficient clathrin assembly activity. Auxilin shares a number of protein-protein interaction motifs with other endocytic proteins, including AP180. We demonstrate that AP180 and auxilin compete for binding to the alpha-ear domain of AP-2. Like AP180, auxilin also directly interacts with the ear domain of beta-adaptin. On the basis of our data, we propose a refined model for the uncoating mechanism of clathrin-coated vesicles.  相似文献   

6.
Clathrin-associated adaptor protein (AP) complexes are major structural components of clathrin-coated vesicles, functioning in clathrin coat assembly and cargo selection. We have carried out a systematic biochemical and genetic characterization of AP complexes in Saccharomyces cerevisiae. Using coimmunoprecipitation, the subunit composition of two complexes, AP-1 and AP-2R, has been defined. These results allow assignment of the 13 potential AP subunits encoded in the yeast genome to three AP complexes. As assessed by in vitro binding assays and coimmunoprecipitation, only AP-1 interacts with clathrin. Individual or combined disruption of AP-1 subunit genes in cells expressing a temperature-sensitive clathrin heavy chain results in accentuated growth and alpha-factor pheromone maturation defects, providing further evidence that AP-1 is a clathrin adaptor complex. However, in cells expressing wild-type clathrin, the same AP subunit deletions have no effect on growth or alpha-factor maturation. Furthermore, gel filtration chromatography revealed normal elution patterns of clathrin-coated vesicles in cells lacking AP-1. Similarly, combined deletion of genes encoding the beta subunits of the three AP complexes did not produce defects in clathrin-dependent sorting in the endocytic and vacuolar pathways or alterations in gel filtration profiles of clathrin-coated vesicles. We conclude that AP complexes are dispensable for clathrin function in S. cerevisiae under normal conditions. Our results suggest that alternative factors assume key roles in stimulating clathrin coat assembly and cargo selection during clathrin-mediated vesicle formation in yeast.  相似文献   

7.
The clathrin adaptor complex AP-2 functions in the assembly of clathrin-coated vesicles at the plasma membrane where it serves to couple endocytic vesicle formation to the selection of membrane cargo proteins. Recent evidence suggests that binding of tyrosine-based endocytic sorting motifs may induce a conformational change within the AP-2 adaptor complex that could enhance its interaction with other cargo molecules and with the membrane. We report here that soluble tyrosine-based endocytic sorting motif peptides facilitate clathrin/AP-2 recruitment to liposomal membranes and induce adaptor oligomerization even in the absence of a lipid bilayer. These effects are specific for endocytic motifs of the type Yxxphi whereas peptides corresponding to NPxY- or di-leucine-containing sorting signals are ineffective. Our data may help to explain how the highly cooperative assembly of clathrin and adaptors could be linked to the selection of membrane cargo proteins.  相似文献   

8.
K M Huang  K D''Hondt  H Riezman    S K Lemmon 《The EMBO journal》1999,18(14):3897-3908
The major coat proteins of clathrin-coated vesicles are the clathrin triskelion and heterotetrameric associated protein (AP) complexes. The APs are thought to be involved in cargo capture and recruitment of clathrin to the membrane during endocytosis and sorting in the trans-Golgi network/endosomal system. AP180 is an abundant coat protein in brain clathrin-coated vesicles, and it has potent clathrin assembly activity. In Saccharomyces cerevisiae, there are 13 genes encoding homologs of heterotetrameric AP subunits and two genes encoding AP180-related proteins. To test the model that clathrin function is dependent on the heterotetrameric APs and/or AP180 homologs, yeast strains containing multiple disruptions in AP subunit genes, as well as in the two YAP180 genes, were constructed. Surprisingly, the AP deletion strains did not display the phenotypes associated with clathrin deficiency, including slowed growth and endocytosis, defective late Golgi protein retention and impaired cytosol to vacuole/autophagy function. Clathrin-coated vesicles isolated from multiple AP deletion mutants were morphologically indistinguishable from those from wild-type cells. These results indicate that clathrin function and recruitment onto membranes are not dependent upon heterotetrameric adaptors or AP180 homologs in yeast. Therefore, alternative mechanisms for clathrin assembly and coated vesicle formation, as well as the role of AP complexes and AP180-related proteins in these processes, must be considered.  相似文献   

9.
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.  相似文献   

10.
Brain-specific AP180 is present in clathrin coats at equal concentration to the adapter complex, AP2, and assembles clathrin faster than any other protein in vitro. Both AP180 and its ubiquitously expressed homolog clathrin assembly lymphoid myeloid leukemia protein (CALM) control vesicle size and shape in clathrin mediated endocytosis. The clathrin assembly role of AP180 is mediated by a long disordered C-terminal assembly domain. Within this assembly domain, a central acidic clathrin and adapter binding (CLAP) sub-domain contains all of the known short binding motifs for clathrin and AP2. The role of the remaining ∼16 kDa C-terminal sequence has not been clear. We show that this sequence has a separate function in ensuring efficient binding of clathrin, based on in vitro binding and ex vivo transferrin uptake assays. Sequence alignment suggests the C-terminal sub-domain is conserved in CALM.  相似文献   

11.
Assembly protein (AP) preparations from bovine brain coated vesicles have been fractionated by clathrin-Sepharose affinity chromatography. Two distinct fractions that possess coat assembly activity were obtained and are termed AP-1 and AP-2. The AP-1, not retained on the resin, has principal components with molecular weights of 108,000, 100,000, 47,000, and 19,000. The AP-2, bound to the resin and eluted by Tris-HCl at a concentration that parallels the latter's effect on coat disassembly, corresponds to the active complex described previously (Zaremba, S., and J. H. Keen, 1983, J. Cell Biol., 97:1339-1347). Its composition is similar to that of the AP-1 in that it contains 100,000-, 50,000-, and 16,000-mol-wt polypeptides in equimolar amounts; minor amounts of 112,000- and 115,000-mol-wt polypeptides are also present. Both are distinct from a recently described assembly protein of larger subunit molecular weight that we term AP-3. These results indicate the existence of a family of assembly proteins within cells. On incubation with clathrin both AP-1 and AP-2 induce the formation of coat structures, those containing AP-1 slightly smaller (mean diameter = 72 nm) than those formed in the presence of AP-2 (mean diameter = 79 nm); both structures have been detected previously in coated vesicle preparations from brain. Coats formed in the presence of AP-2 consistently contain approximately one molecule each of the 100,000-, 50,000-, and 16,000-mol-wt polypeptides per clathrin trimer. By low angle laser light scattering the molecular weight of native AP-2 was determined to be approximately 343,000, indicating that it is a dimer of each of the three subunits, and implying that it is functionally bivalent in clathrin binding. A model for AP-mediated coat assembly is proposed in which a bivalent AP-2 molecule bridges the distal legs or terminal domains of two clathrin trimers that are destined to occupy adjacent vertices in the assembled coat. Binding of a second AP-2 molecule locks these two trimers in register for assembly and further addition of AP-2 to free trimer legs promotes completion of the clathrin lattice. Effects of AP binding on the angle and flexibility of the legs at the hub of the trimer (the "pucker") are suggested to account for the characteristic size distributions of coats formed under varied conditions and, more speculatively, to contribute to the transformation of flat clathrin lattices to curved coated vesicles that are thought to occur during endocytosis.  相似文献   

12.
Clathrin-mediated endocytosis of synaptic vesicle membranes involves the recruitment of clathrin and AP-2 adaptor complexes to the presynaptic plasma membrane. Phosphoinositides have been implicated in nucleating coat assembly by directly binding to several endocytotic proteins including AP-2 and AP180. Here, we show that the stimulatory effect of ATP and GTPgammaS on clathrin coat recruitment is mediated at least in part by increased levels of PIP2. We also provide evidence for a role of ADP-ribosylation factor 6 (ARF6) via direct stimulation of a synaptically enriched phosphatidylinositol 4-phosphate 5-kinase type Igamma (PIPKIgamma), in this effect. These data suggest a model according to which activation of PIPKIgamma by ARF6-GTP facilitates clathrin-coated pit assembly at the synapse.  相似文献   

13.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

14.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

15.
The beta 1 and beta 2 subunits are the closely-related large chains of the trans-Golgi network AP-1 and the plasma membrane AP-2 clathrin-associated protein complexes, respectively. Recombinant beta 1 and beta 2 subunits have been generated in Escherichia coli. It was found that, in the absence of all the other AP subunits, beta 1 and beta 2 interact with clathrin and drive the efficient assembly of clathrin coats. In addition, beta 2 subunits and AP complexes compete for the same clathrin binding site. The appearance of the clathrin/beta coats is the same as the barrel-shaped structures formed with native AP complexes. It is proposed that the principal function of the beta subunits is to initiate coat formation, while the remaining subunits of the AP complexes have other roles in coated pit and coated vesicle function.  相似文献   

16.
We have examined the in vitro behavior of clathrin-coated vesicles that have been stripped of their surface coats such that the majority of the clathrin is removed but substantial amounts of clathrin assembly proteins (AP) remain membrane-associated. Aggregation of these stripped coated vesicles (s-CV) is observed when they are placed under conditions that approximate the pH and ionic strength of the cell interior (pH 7.2, approximately 100 mM salt). This s-CV aggregation reaction is rapid (t1/2 < or = 0.5 min), independent of temperature within a range of 4-37 degrees C, and unaffected by ATP, guanosine-5'-O-(3-thiophosphate), and in particular EGTA, distinguishing it from Ca(2+)-dependent membrane aggregation reactions. The process is driven by the action of membrane-associated AP molecules since partial proteolysis results in a full loss of activity and since aggregation is abolished by pretreatment of the s-CVs with a monoclonal antibody that reacts with the alpha subunit of AP-2. However, vesicle aggregation is not inhibited by PPPi, indicating that the previously characterized polyphosphate-sensitive AP-2 self-association is not responsible for the reaction. The vesicle aggregation reaction can be reconstituted: liposomes of phospholipid composition approximating that found on the cytoplasmic surfaces of the plasma membrane and of coated vesicles (70% L-alpha-phosphatidylethanolamine (type I-A), 15% L-alpha-phosphatidyl-L-serine, and 15% L-alpha-phosphatidylinositol) aggregated after addition of AP-2, but not of AP-1, AP-3 (AP180), or pure clathrin triskelions. Aggregation of liposomes is abolished by limited proteolysis of AP-2 with trypsin. In addition, a highly purified AP-2 alpha preparation devoid of beta causes liposome aggregation, whereas pure beta subunit does not, consistent with results obtained in the s-CV assay which also indicate the involvement of the alpha subunit. Using a fluorescence energy transfer assay we show that AP-2 does not cause fusion of liposomes under physiological solution conditions. However, since the fusion of membranes necessarily requires the close opposition of the two participating bilayers, the AP-2-dependent vesicle aggregation events that we have identified may represent an initial step in the formation and fusion of endosomes that occur subsequent to endocytosis and clathrin uncoating in vivo.  相似文献   

17.
Accessory protein recruitment motifs in clathrin-mediated endocytosis   总被引:11,自引:0,他引:11  
Clathrin-mediated endocytosis depends upon the interaction of accessory proteins with the alpha-ear of the AP-2 adaptor. We present structural characterization of these regulatory interactions. DPF and DPW motif peptides derived from eps15 and epsin bind in type I beta turn conformations to a conserved pocket on the alpha-ear platform. We show evidence for a second binding site that is DPW motif specific. The structure of a complex with an AP-2 binding segment from amphiphysin reveals a novel binding motif that we term FxDxF, which is engaged in an extended conformation by a unique surface of the platform domain. The FxDxF motif is also used by AP180 and the 170 kDa isoform of synaptojanin and can be found in several potential endocytic proteins, including HIP1, CD2AP, and PLAP. A mechanism of clathrin assembly regulation is suggested by three different AP-2 engagement modes.  相似文献   

18.
The adaptor protein complex AP-1 mediates vesicular protein sorting between the trans Golgi network and endosomes. AP-1 recycles between membranes and the cytoplasm together with clathrin during transport vesicle formation and vesicle uncoating. AP-1 recycles independent of clathrin, indicating binding to unproductive membrane domains and premature termination of vesicle budding. Membrane recruitment requires ADP ribosylation factor-1-GTP, a transmembrane protein containing an AP-1-binding motif and phosphatidyl-inositol phosphate (PI-4-P). Little is known about the regulation of AP-1 membrane-cytoplasm recycling. We identified the N-terminal domain of micro1A-adaptin as being involved in the regulation of AP-1 membrane-cytoplasm recycling by constructing chimeras of micro1A and its homologue micro2. The AP-1* complex containing this mu2-micro1A chimera had slowed down recycling kinetics, resulting in missorting of mannose 6-phosphate receptors. The N-terminal domain is only accessible from the cytoplasmic AP-1 surface. None of the proteins known to influence AP-1 membrane recycling bound to this micro1A domain, indicating the regulation of AP-1 membrane-cytoplasm recycling by an yet unidentified cytoplasmic protein.  相似文献   

19.
Crump CM  Banting G 《FEBS letters》1999,444(2-3):195-200
Tyrosine based motifs conforming to the consensus YXXphi (where phi represents a bulky hydrophobic residue) have been shown to interact with the medium chain subunit of clathrin adaptor complexes. These medium chains are targets for phosphorylation by a kinase activity associated with clathrin coated vesicles. We have used the clathrin coated vesicle associated kinase activity to specifically phosphorylate a soluble recombinant fusion protein of mu2, the medium chain subunit of the plasma membrane associated adaptor protein complex AP-2. We have tested whether this phosphorylation has any effect on the interaction of mu2 with the tyrosine based motif containing protein, TGN38, that has previously been shown to interact with mu2. Phosphorylation of mu2 was shown to have no significant effect on the in vitro interaction of mu2 with the cytosolic domain of TGN38, indicating that reversible phosphorylation of mu2 does not play a role in regulating its direct interaction with tyrosine based internalisation motifs. In addition, although a casein kinase II-like activity has been shown to be associated with clathrin coated vesicles, we show that mu2 is not phosphorylated by casein kinase II implying that another kinase activity is present in clathrin coated vesicles. Furthermore the kinase activity associated with clathrin coated vesicles was shown to be capable of phosphorylating dynamin 1. Phosphorylation of dynamin 1 has previously been shown to regulate its interaction with other proteins involved in clathrin mediated endocytosis.  相似文献   

20.
The role of phospholipase Cgamma1 (PLCgamma1) in signal transduction was investigated by characterizing its SH domain-binding proteins that may represent components of a novel signaling pathway. A 180-kDa protein that binds to the SH2 domain of PLCgamma1 was purified from rat brain. The amino acid sequence of peptide derived from the purified protein is now identified as AP180, a clathrin assembly protein that has been implicated in clathrin-mediated synaptic vesicle recycling in synapses. In this report, we demonstrate the stable association of PLCgamma1 with AP180 in a clathrin-coated vesicle complex, which not only binds to the carboxyl-terminal SH2 domain of PLCgamma1, but also inhibits its enzymatic activity in a dose-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号