首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work a gel was formed by complexation of two natural polyelectrolytes, chitosan and xanthan. Changes in the hydrogels rheological properties have been studied in terms of hydrogel concentration (7–10% w/w), chemical media used for the hydrogel dispersion, and ‘test lag time’; i.e., the time between hydrogel dispersion in the chemical media and the start of the rheological test (up to 390 min). The viscoelastic properties of this polysaccharide system were characterized by oscillatory shear measurements under small-deformation conditions and the results show that chitosan/xanthan hydrogels behave like weak gels. The shear modulus increased almost linearly with frequency in the range studied (0.1–65 s−1). The effects of hydrogel concentration and dispersion medium have been related to electrostatic equilibrium and by the presence of counter-ions modifying the internal structure of the hydrogel.  相似文献   

2.
The rheological properties of a moderately concentrated solution of xanthan gum in both the ordered and the disordered state have been studied. Oscillatory shear, steady shear flow, and extensional flow experiments have been performed at different temperatures, covering the order-disorder transition determined by differential scanning calorimetry (DSC). The principle of time/temperature superposition was applied to the xanthan solutions for the different types of flow. Although a master curve covering six decades of frequency could be obtained for the storage modulus over the entire investigated temperature range, less agreement was found for the other modulus. This indicates that the order-disorder transition reflects changes on the molecular scale and slight modification of the physical network structure. To the authors' knowledge, this is the first time that this transition has been observed using these different rheological techniques.  相似文献   

3.
In the present study, carboxymethyl chitosan was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for colon targeted drug delivery of ornidazole. Ornidazole was incorporated at the time of crosslinking of carboxymethyl chitosan. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight; which were found to be 84.6% and 3.5×10(4) Da, respectively. The degree of substitution on prepared carboxymethyl chitosan was found to be 0.68. All hydrogel formulations showed more than 85% and 74% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels checked in different pH values, 1.2, 6.8 and 7.4, indicated pH responsive swelling characteristic with very less swelling at pH 1.2 and quick swelling at pH 6.8 followed by linear swelling at pH 7.4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependant on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, (1)H NMR, DSC and p-XRD studies, which confirmed formation of carboxymethyl chitosan from chitosan and absence of any significant chemical change in ornidazole after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

4.
A model for analyzing the swelling rate of ionic gels was developed on the basis of the diffusion of a species of mobile ion. This model was applied to the analysis of pH-sensitive swelling of a xanthan/chitosan complex gel in NaOH solutions of pH 9–12, using the sodium ion as the reference mobile ion. The time–course for swelling of gel beads with a pH change from 11 to 10 was successfully described by the developed model. The values for the diffusion coefficient obtained by fitting the model to the data were of the same order as those for the diffusion coefficient of the sodium ion measured for a membrane of the complex gel. Thus, it was confirmed that the swelling rate of the gel due to pH change was mainly controlled by the diffusion of mobile ions. However, the time-course for swelling of the gel at pH values below 10 was not satisfactorily explained by the model developed, suggesting that the change in the degree of ionization during swelling also affected the swelling rate of the xanthan/chitosan complex gel.  相似文献   

5.
Complex coacervation driven by associative electrostatic interactions was studied in mixtures of exfoliated sodium-montmorillonite (Na(+)-MMT) nanoplatelets and fish gelatin, at a specific mixing ratio and room temperature. Structural and viscoelastic properties of the coacervate phase were investigated as a function of pH by means of different complementary techniques. Independent of the technique used, the results consistently showed that there is an optimum pH value at which the coacervate phase shows the tightest structure with highest elasticity. The solid-like coacervates showed an obvious shear-thinning behavior and network fracture but immediately recovered back into their original elastic character upon removal of the shear strain. The nonlinear mechanical response characterized by single step stress relaxation experiments revealed the same trend for the yield stress and isochronal shear modulus of the coacervates as a function of pH with a maximum at pH 3.0 and lower values at 2.5 and 3.5 pHs, followed by a very sharp drop at pH 4.0. Finally, small-angle X-ray scattering (SAXS) data confirmed that at pHs lower than 4.0 the coacervate phases were dense and structured with a characteristic length scale (ξ(SAXS)) of ~7-9 nm. Comparing the ξ(SAXS) with rheological characteristic length (ξ(rheol)) estimated from low-frequency linear viscoelastic data and network theory, it was concluded that both the strength of the electrostatic interactions and the conformation of the gelatin chains before and during of the coacervation process are responsible for the structure and rigidity of the coacervates.  相似文献   

6.
Kwon TK  Kim JC 《Biomacromolecules》2011,12(2):466-471
pH-dependent release from monoolein (MO) cubic phase was obtained by taking advantage of complex coacervation between hydrophobically modified alginate (HmAL) and hydrophobically modified silk fibroin (HmSF) in the water channels. The degree of coacervation was investigated at pH 3.0 by a light scattering method and the maximum coacervation was observed when the ratio of HmAL to HmSF was 1:15. The degree of coacervation dramatically decreased (from 581.2 to 5.2 nm in size and from 267.9 to 12.3 nm in Kcps) when the pH of medium increased from 3.0 to 5.0. The % release in 100 h of FITC-dextran increased from 2.42 to 7.20% when pH of release medium increased from 3.0 to 9.0. Under acidic conditions, coacervate will block the water channels of cubic phase, suppressing the release. As the pH of release medium increases, the coacervate will dissolve, resulting in a higher release. The cubic phase could be exploited as a pH-sensitive carrier for the oral delivery of an acid-labile drug.  相似文献   

7.
A novel pH-responsive hydrogel (CHC) composed of N-carboxyethyl chitosan (CEC) and N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) was synthesized by the redox polymerization technique. Turbidimetric titrations were used to determine the stoichiometric ratio of these two chitosan derivatives. The hydrogel was characterized by FT-IR, thermal gravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The dynamic transport of water showed that the hydrogel reached equilibrium within 48 h. The swelling ratio of CHC hydrogel depended significantly on the pH of the buffer solution. The performance of the CHC as a matrix for the controlled release of BSA was investigated. It was found that the release behavior was determined by pH value of the medium as well as the intermolecular interaction between BSA and the hydrogels.  相似文献   

8.
The cross-linked microspheres using chitosan with different molecular weights and degree of deacetylation have been prepared in presence of sodium hexameta polyphosphate (SHMP) as physical cross-linker. The degree of cross-linking through electrostatic interactions in chitosan microspheres has been evaluated by varying the charge density on chitosan and varying degree of dissociation of sodium hexameta polyphosphate by solution pH. The degree of deacetylation and molecular weight of chitosan has controlled electrostatic interactions between hexameta polyphosphate anions and chitosan, which played significant role in swelling, loading and release characteristics of chitosan microspheres for centchroman. The microspheres prepared by hexameta polyphosphate anions cross-linker were compact and more hydrophobic than covalently cross-linked microspheres, which has been attributed to the participation of all amino groups of chitosan in physical cross-linking with added hexameta polyphosphate anions. The microspheres prepared under different experimental conditions have shown an initial step of burst release, which was followed by a step of controlled release for centchroman. The extent of drug release in these steps has shown dependence on properties of chitosan and degree of cross-linking between chitosan and added polyanions. The degree of swelling and release characteristics of microspheres was also studied in presence of organic and inorganic salts, which shown significant effect on controlled characteristics of microspheres due to variations in ionic strength of the medium. The initial step of drug release has followed first order kinetics and become zero order after attaining an equilibrium degree of swelling in these microspheres. The microspheres prepared using chitosan with 62% (w/w) degree of deacetylation and molecular weight of 1134 kg mol−1 have shown a sustained release for centchroman for 50 h at 4% (w/w) degree of cross-linking with SHMP.  相似文献   

9.
The fundamental properties and pH-sensitivity of chitosan/gelating hydrogels were investigated using spectroscopic and microelectro mechanical (MEMS) measurement approaches. Turbidimetric titration revealed that there were electrostatic attractive interactions between tripolyphosphate (TPP), chitosan, and gelatin in the acidic pH range, depending on their degree of ionization. The pH-sensitive swelling behavior of the hydrogels was investigated by monitoring the deflection of hydrogel-coated microcantilevers, which exhibited a sensitive and repeatable response to solution pH. The deflection of the microcantilever increased as the pH decreased, and the response speed of the system exhibited a nearly linear relationship with pH. The effects of the pH and concentration of TPP solution, as well as the ratio of chitosan to gelatin in gel precursor solutions, on the pH sensitivity of the hydrogels were also investigated. It was found that the swelling of the hydrogel is mainly a result of chain relaxation of chitosan-TPP complexes caused by protonation of free amino groups in chitosan, which depends on the crosslinking density set during the formation of the network. An increase in initial crosslink density induced a decrease in swelling and pH sensitivity. It can be concluded from this study that pH-sensitive chitosan gel properties can be tuned by preparatory conditions and inclusion of gelatin. Furthermore, microcantilevers can be used as a platform for gaining increased understanding of environmentally sensitive polymers.  相似文献   

10.
Xanthan gum production under several operational conditions has been studied. Temperature, initial nitrogen concentration and oxygen mass transfer rate have been changed and average molecular weight, pyruvilation and acetylation degree of xanthan produced have been measured in order to know the influence of these variables on the synthesised xanthan molecular structure. Also, xanthan gum solution viscosity has been measured, and rheological properties of the solutions have been related to molecular structure and operational conditions. The Casson model has been employed to describe the rheological behaviour. The parameter values of the Casson model, tau(0) and K(c), have been obtained for each polysaccharide synthesised under different operational conditions. Both pyruvilation and acetylation degrees and average molecular weight of xanthan increase with fermentation time at any operating conditions. Xanthan molecules with the highest average molecular weight have been obtained at 25 degrees C. Nevertheless, at this temperature acetate and pyruvate radical concentration are lowest. Nitrogen concentration in broth does not show any clear influence over xanthan average molecular weight, although with high nitrogen source concentration xanthan with low pyruvilation degree is produced.  相似文献   

11.
This study concerns the interfacial properties of the plant proteins-arabic gum coacervates, which are involved in encapsulation processes based on complex coacervation. The results make it possible to deduce the prerequisite characteristics of the protein, which are involved in the coacervate interfacial properties. The influence of pH and concentration on protein interfacial properties was also studied so as to enable us to predict the best conditions to achieve encapsulation. It has been established that, to obtain a good encapsulation yield, the coacervate must show high surface-active properties and its adsorption on the oil droplets must be favored compared to the free protein adsorption. On the other hand, mechanical properties of the interfacial film made of the coacervate, appear to be a key parameter, as reflected by the dilational viscoelasticity measurements. When compared to the properties of the proteins films, an increase of the rigidity of the interfacial film was shown with the coacervates. It was also observed that viscoelastic properties of the coacervate film were strongly reduced, as well as the associated relaxation times. In acidic conditions, the coacervates containing alpha-gliadin are characterized by an interfacial viscoelastic behavior. This behavior reflects the softness of the interfacial film. This viscoelasticity allows also the formation of a continuous layer around the oil droplets to be encapsulated. Drop tensiometry is shown to be a method that could allow the most adapted protein to be selected and the conditions of the coacervation process to be optimized with regard to concentration and pH.  相似文献   

12.
A physical model of the cytoskeleton based on synthetic polyelectrolyte hydrogel of polymethacrylic acid has been proposed. From the physicochemical point of view, the structures of polyelectrolyte gel and the cytoskeleton show a high degree of similarity. It has been shown that polyelectrolyte gel can shorten and produce mechanical stress in response to changes in the composition of the surrounding solution. The mechanical properties of the model gel have been evaluated: Young modulus (2–6 kPa), stress relaxation time (0.1–1 s), and apparent viscosity (0.3–3 kPa s). The viscoelastic properties of the gel depend on the degree of its swelling. It has been demonstrated that the mechanical properties of gels of polymethacrylic acid are close to those of biological objects.  相似文献   

13.
In this study, a 24 factorial experimental design was employed in order to evaluate the influence of the reaction conditions and preparation method on alginate–chitosan hydrogel properties. Alginate content, pH, chitosan molecular weight and the hydrogel preparation method were the independent variables and the reaction yield, particle size, swelling degree and point of zero surface charge were the dependent variables. The results showed that hydrogels were spherical with an average diameter of 5.0 ± 2.0 μm. Reaction yield varied according to the parameters, and chitosan molecular weight showed the greatest influence. Furthermore, the swelling degree and point of zero surface charge showed a linear dependence on the alginate content. In this regard, the study showed that hydrogels with a specific charge and swelling degree can be obtained by controlling the alginate content using the equation here provided to give an enhanced and site-specific controlled drug release.  相似文献   

14.
Elastin is the polymeric protein responsible for the properties of extensibility and elastic recoil of the extracellular matrix in a variety of tissues. Although proper assembly of the elastic matrix is crucial for its durability, the process by which this assembly takes place is not well-understood. Recent data suggest the complex interaction of tropoelastin, the monomeric form of elastin, with a number of other elastic matrix-associated proteins, including fibrillins, fibulins, and matrix-associated glycoprotein (MAGP), is important to achieve the proper architecture of the elastic matrix. At the same time, it is becoming clear that self-assembly properties intrinsic to tropoelastin itself, reflected in a temperature-induced phase separation known as coacervation, are also important in this assembly process. In this study, using a well-characterized elastin-like polypeptide that mimics the self-assembly properties of full-length tropoelastin, the process of self-assembly is deconstructed into "coacervation" and "maturation" stages that can be distinguished kinetically by different parameters. Members of the fibrillin, fibulin, and MAGP families of proteins are shown to profoundly affect both the kinetics of self-assembly and the morphology of the maturing coacervate, restricting the growth of coacervate droplets and, in some cases, causing clustering of droplets into fibrillar structures.  相似文献   

15.
《IRBM》2009,30(3):139-140
Injectable biomaterials are a particular field of biomaterials used for noninvasive surgical techniques (e.g. percutaneous surgery). The fundamental characteristic of this type of biomaterials is their rheological properties during implantation. In this context, the subject of this research work was to evaluate the rheological properties of two injectable biomaterials used in osteoarticular and dental tissue engineering: (i) a synthetic extracellular matrix and (ii) an injectable calcium phosphate suspension. The rheological properties of silated hydroxypropylmethylcellulose hydrogel were studied. It is shown that although silanization reduces the hydrodynamic volume in dilute solution, it does not affect significantly the rheological behavior of the concentrated solutions. In dilute solution, intrinsic viscosity of different HPMC-Si solutions before steam sterilization indicated that macromolecular chains occupied larger hydrodynamic volume compared to the sterilized HPMC-Si solutions. For the sterilized HPMC-Si concentrated solutions, the limiting viscosities decreased when the pH increased. This change, remarked in dilute and concentrated domain has been attributed to the formation of both intra- and intermolecular associations during the phase separation process of HPMC-Si during steam sterilization. The formation of HPMC-Si hydrogels from injectable aqueous solution was studied after neutralization. The study of the gelation process revealed the dependence of the final concentration of HPMC-Si hydrogel, pH and temperature on cross-linking kinetics and viscoelastic properties. An injectable calcium phosphate ceramic suspension was studied. This “ready-to-use” injectable bone substitute is consisting of an aqueous HPMC solution as matrix and calcium phosphate particles as fillers. The rheological characterization revealed the macromolecular behavior of the HPMC. The investigations of settling kinetics showed the dependence of the particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. The rheological properties and injectability of this suspension were also studied. The suspensions showed a strongly increased viscosity as compared to the HPMC solution. The rheological proprieties of suspensions depend on the composition. A simple device has been used to characterize extrusion of the paste using a disposable syringe fitted with a needle. The injectability modeling was realized. A theoretical approach based on the capillary flow of non newtonian fluids was used to predict the necessary pressure for injection, on the basis of rheological properties and extrusion conditions. The theoretical estimation of the extrusion pressure showed a wall slip in the suspensions, so that the injection pressure is less than anticipated. The influence of wall slip leads, however, to a constant proportionality factor between theory and injection experiments.  相似文献   

16.
Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.  相似文献   

17.
Li H  Ng TY  Yew YK  Lam KY 《Biomacromolecules》2005,6(1):109-120
The modulation of the swelling ability of the hydrogel matrix by pH-stimulus enables the dynamic control of the swelling forces, thereby obtaining effective diffusivity and permeability of the solutes, or mechanical energy from the hydrogel. In this work, a chemo-electro-mechanical model describing hydrogel behavior, based on multi-field effects, is developed to simulate the swelling and shrinking of these fascinating bio-materials, and it is termed the multi-effect-coupling pH-stimulus (MECpH) model. This model accounts for the ionic fluxes within both the hydrogel and solution, the coupling between the electric field, ionic fluxes, and mechanical deformations of the hydrogel. The main contribution of this model is to incorporate the relationship between the concentrations of the ionized fixed-charge groups and the diffusive hydrogen ion, which follows a Langmuir isotherm, into the Poisson-Nernst-Planck system. To validate this MECpH model, one-dimensional steady-state simulations under varying pH solution are carried out via a meshless Hermite-Cloud methodology, and the numerical results are compared with available experimental data. It is shown that the presently developed MECpH model is accurate, efficient, and numerically stable.  相似文献   

18.
Turbidity measurements performed at 450 nm were used to follow the process of simple coacervation when 1% (w/v) aqueous alkali processed gelatin (type-B) solutions were titrated with methanol, ethanol, propanol, and tert-butyl alcohol at various pHs of the solution ranging from pH = 5 to 8 and ionic strengths varying from I = 0.01 to 0.1 M NaCl. The titration profiles clearly established the transition points in terms of the percentage of volume of alcohol added relative to that of solvent corresponding to the first occurrence of turbidity (Vt) and a point of turbidity maximum (Vp). Addition of more alcohol drove the system toward precipitation. The values of Vt and Vp characterized the initiation of intramolecular folding and intermolecular aggregate formation of the charge neutralized gelatin molecules and the subsequent micro coacervate droplet formation. The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation. The aggregates constitute the coacervate phase while the folded gelatin molecules mostly stay dispersed in the supernatant. The data taken together reveal the role played by solution entropy in addition to that of electrostatic and solute-solvent interactions, which had been overlooked hitherto.  相似文献   

19.
A carboxymethyl starch (CMS) microgel system was prepared for the control of uptaking and releasing proteins (lysozyme). The physicochemical properties of microgels in various degrees of substitution (DS) were determined by thermal gravimetric analysis (TGA), swelling degree, and rheological analysis. The microgel particle size mostly ranged from 25 µm to 45 µm. The result obtained from the TGA studies indicated that carboxymethylation decreased the thermal stability of starch, but crosslinking increased the thermal stability of CMS. The CMS microgels showed typical pH sensitivity, and the swelling degree of microgel increased with the increasing of DS and pH, because of the large amounts of carboxyl group ionization. The samples (2.25%) could behave as viscoelastic solids since the storage modulus was larger than the loss modulus over the entire frequency range. The protein uptake increased with increasing pH and DS at low salt concentration. The optimal pH shifted to lower pH with increasing ionic strength. The saturated protein uptake decreased with increasing ionic strength at each pH. The protein was easily released from the microgel with high pH and high salt concentration.  相似文献   

20.
Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号