首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
First, we attempted to isolate glycosphingolipids from eel serum HDL. A single ganglioside containing N-acetylneuraminic acid (NeuAc), which is positive with resorcinol and orcinol reactions, was purified. The mobilities of the purified ganglioside and its lyso-form on high performance TLC were similar as those of authentic GM4 and its lyso-form, respectively. The mass of the purified ganglioside was determined by TOF mass spectrometer, and the mass of its oligosaccharide was the same as that of authentic GM4 from human brain consisting of disaccharide of NeuAc and galactose. The ganglioside from eel HDL was not hydrolyzed by recombinant endoglycoceramidase II, which cannot hydrolyze between galactose and ceramide of gangliosides, but hydrolyzes between glucose and ceramide. We concluded from these results that the ganglioside purified from eel serum HDL is GM4. Second, we investigated the effects of the ganglioside on binding of HDL labeled with fluorescein isothiocyanate (FITC-HDL) to cultured eel hepatocytes and on FITC-HDL ligand blotting by using plasma membrane proteins of the hepatocytes. Stimulatory effect of GM4 on FITC-HDL binding to the hepatocytes and FITC-HDL ligand blotting suggests strongly that GM4 is a ligand for HDL binding protein of eel hepatocytes.  相似文献   

2.
Several studies have shown that sperm capacitation was accompanied by a change in the lipid composition of the sperm membrane. In cattle, the major proteins of (bovine)seminal plasma (BSP proteins: BSP-A1/A2, BSP-A3, and BSP-30-kDa) potentiate sperm capacitation induced by high-density lipoprotein (HDL). Our recent studies indicate that these proteins and HDL stimulate sperm cholesterol efflux during capacitation. In order to gain more insight into the mechanisms of BSP-mediated sperm capacitation, we studied whether or not BSP proteins induce phospholipid efflux from epididymal sperm membrane. By direct determination of choline phospholipids on unlabeled epididymal sperm, the results show that sperm incubated in the presence of BSP-A1/A2 protein lost 34.4% of their choline phospholipids compared with the control (11.5%). Similar results were obtained using labeled epididymal sperm. Labeling was carried out by incubating washed epididymal sperm for 1 h with medium containing [(3)H]palmitic acid. The majority of the label was incorporated into sperm phosphatidylcholine. Studies of sperm phospholipid efflux were done by incubating the labeled sperm with purified BSP proteins, delipidated BSA, or bovine seminal ribonuclease (RNase, control protein). When labeled ([(3)H]phospholipid) epididymal sperm were incubated with BSP proteins (20-120 microg/ml) for 8 h, the sperm lost [(3)H]phospholipid in a dose-dependent manner (maximum efflux of approximately 30%). After the incubation with BSP proteins, the efflux particles were fractionated by size-exclusion chromatography. Analysis of the fractions obtained showed that the [(3)H]phospholipid was associated with BSP proteins. BSA (6 mg/ml) stimulated a specific phospholipid efflux of approximately 22%. In contrast, bovine RNase (120 microg/ml) did not stimulate phospholipid efflux. These results indicate that BSP proteins participate in the sperm cholesterol and phospholipid efflux that occurs during capacitation.  相似文献   

3.
The protein structure of Treponema pallidum was characterized by two-dimensional electrophoresis (2DE), consisting of isoelectric focusing (IEF, pH 5 to 7) in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension. Up to 85 major polypeptide species could be detected in the organisms in 2DE gels by Coomassie Blue staining. The antigenicity of the individual polypeptides was determined by transferring the 2DE pattern to nitrocellulose paper and utilizing a sensitive immunoperoxidase procedure to demonstrate the reactivity of immunoglobulins in sera obtained from rabbits infected intratesticularly at least 6 mo previously. The infected rabbit serum reacted with virtually every major polypeptide detectable by protein staining techniques, indicating that infected rabbits produce antibodies against nearly all major T. pallidum proteins at the time when the animals exhibit systemic resistance to reinfection. Surface radioiodination of freshly purified T. pallidum by an Iodogen procedure yielded preferential labeling of a major polypeptide with an apparent m.w. of 39,000. The results of this study indicate that the antigenic complexity of T. pallidum is much greater than described previously. The 39-kd polypeptide appears to be a major surface constituent of T. pallidum and as such may play an important role in the induction of immunity to syphilis.  相似文献   

4.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

5.
Analysis of membrane lipids by 500 MHz 1H NMR   总被引:1,自引:0,他引:1  
A nondestructive method has been developed for rapid analysis of lipid content of membrane extracts based on high field proton NMR spectroscopy. Lipid extraction is done by stepwise sonication of purified membranes into chloroform:methanol:water mixtures, and 1H spectra are recorded at 35 degrees C on final preparations consisting of at least 1 mg dried lipid solubilized in 2:1 CD3OD:CDCl3. Spectral peaks of lipid mixtures are assigned to lipid classes using a data base of standard lipid characteristic resonances derived from purified single membrane lipids and known mixtures of them. Peak intensities of characteristic peaks yield ratios of various lipids such as cholesterol:phospholipid and phosphatidylcholine:phosphatidylethanolamine, degree of unsaturation, average acyl chain length, total glycerol lipid content, and presence or absence of particular lipids, such as glycolipids or lysolipids. This procedure of membrane lipid analysis has been verified using known mixtures of purified standard lipids.  相似文献   

6.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

7.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

8.
Activities of carboxylesterase and malate dehydrogenase on membranes were retained after enzymes of mouse liver cytosol were separated by non-denaturing, two-dimensional electrophoresis (2-DE), stained using imidazole and zinc salts and electroblotted on to membranes. Furthermore, hydrolytic changes of phosphatidylcholine by the esterase were examined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) after separation, and reversible staining and immobilization to membranes. Hydrolytic activity of the esterase on the membranes was 20% of the original activity of the tissue homogenate. The present method can be applied to the production of several types of enzyme reactors on membranes.  相似文献   

9.
The cytolytic toxin from the sea anemone Stoichactis helianthus was inhibited up to 90–95% by suspensions of sphingomyelin but not by phosphatidylcholine or other membrane lipids. When the toxin was incubated with spingomyelin and the mixture fractionated either by isoelectric focusing or Sephadex gel filtration, the residual hemolytic units migrated together with the lipid and not as free toxin. Incubation with phosphatidylcholine, however, did not shift the toxin peak in either type of column.A toxin-ferritin conjugate retaining hemolytic activity was observed by negative staining to bind to liposomers prepared with sphingomyelin but not with liposomes containing phosphatidylcholine. The results provide evidence that the membrane binding site of the toxin is sphingomyelin.  相似文献   

10.
Paraoxonase (PON-1) is a high-density lipoprotein (HDL)-bound enzyme with activity toward multiple substrates. It hydrolyzes organic phosphate and aromatic carboxylic acid esters. It also inhibits accumulation of oxidized phospholipids in plasma lipoproteins by a mechanism yet to be determined. Therefore, we subjected apolipoprotein A-I proteoliposomes containing either 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine to oxidation by a peroxynitrite generator, SIN-1, in the presence and absence of purified PON-1. PON-1 modified the proportion of oxidation products without affecting the overall extent of PC oxidation. However, in the presence of PON-1, phosphatidylcholine isoprostanes were hydrolyzed to lysophosphatidylcholine. In addition, PON-1 hydrolyzed the phosphatidylcholine core aldehydes 1-palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-(5-oxo)valeroyl-sn-glycero-3-phosphocholine to lysophosphatidylcholine. This hydrolysis was not affected by pefabloc, a serine esterase inhibitor. There was no detectable release of linoleate, arachidonate, or their hydroperoxy or hydroxy derivatives in the presence of PON-1. We conclude that PON-1 minimizes the accumulation of phosphatidylcholine oxidation products by the hydrolysis of phosphatidylcholine isoprostanes and core aldehydes to lysophosphatidylcholine with a serine esterase-independent mechanism.  相似文献   

11.
Membranes isolated from bovine adrenal cortex, incubated with human high-density lipoproteins (HDL3), labeled with 125I and [3H]cholesteryl linoleyl ether, showed preferential binding of [3H]cholesteryl linoleyl ether. The preferential binding was Ca2+ independent, temperature sensitive and was slightly increased after phospholipase C or pronase treatment. Reduction of membrane phosphatidylcholine by phospholipase A2 resulted in a marked increase in the binding of the entire HDL3 particle and a relative decrease in preferential binding of [3H]cholesteryl linoleyl ether. These findings suggest that the presence of intact phospholipid in the membrane plays an important role in the magnitude of the preferential binding.  相似文献   

12.
Chediak-Higashi syndrome (CHS) is an autosomal recessive disease characterized by the presence of abnormally large cytoplasmic organelles in all body granule producing cells. The molecular mechanism for this disease is still unknown. Functional disorders in membrane-related processes have been reported. Erythrocyte membranes from four CHS patients and 15 relatives including obligatory heterozygous were studied to examine potential alterations in the lipid and fatty acid profile of erythrocyte membranes associated with this syndrome. Plasma concentrations of cholesterol, triglycerides, phospholipids, and apolipoproteins AI and B100, and the lipid components of very low-, intermediate-, low- and high-density lipoproteins were also determined. CHS erythrocyte membranes were found to be enriched with lipids in relation to protein and to show: (1) an increase in cholesterol and choline-containing phospholipids (sphingomyelin and phosphatidylcholine) that predominate in the outer monolayer, which is higher than the increase in phosphatidylserine and phosphatidylethanolamine, that are chiefly limited to the inner monolayer in normal red blood cells; (2) a relative palmitic acid and saturated fatty acid increase and arachidonic acid and unsaturated fatty acid decrease, this resulting in a lower unsaturation index than controls. Changes in CHS erythrocyte membrane lipids seem to be unrelated to serum lipid disorders as plasma lipid and apolipoprotein concentrations were apparently in the normal range, with the exception of a modest hypertriglyceridemia in patients and relatives and a decreased concentration of HDL cholesterol in patients. These findings indicate that CHS erythrocyte membranes contain an abnormal lipid matrix with which membrane proteins are defectively associated. The anomalous CHS membrane composition can be explained on the postulated effects of the CHS1/Lyst gene.  相似文献   

13.
We studied the effect of fetal calf serum and serum proteins fractions on the interaction of phospholipid vesicles consisting of phosphatidylcholine, cholesterol and dicetylphosphate (molar ratio 7 : 2 : 1), with rat liver parenchymal cells in a primary monolayer culture. During incubation of such vesicles with fetal calf serum part of the labeled phosphatidylcholine is transferred to a lipoprotein particle similar to the one we identified previously as a derivative of high density lipoprotein (Scherphof, G., Roerdink, F.H., Waite, M. and Parks, J. (1978) Biochim. Biophys. Acta 542, 296--307). When the particle thus formed is incubated with the cells a transfer of the phospholipid label to the cells is observed. When vesicles are incubated with the cells in presence of serum such lipoprotein-mediated lipid transfer may conceivably contribute to the total lipid uptake observed. However, we found that the presence of fetal calf serum in the culture medium greatly diminished rather than increased the total transfer of liposomal lipid to the cells. Also bovine serum albumin and bovine beta-globulins reduced this transfer, although to a lesser extent than whole serum. alpha-Globulins, on the other hand, were as effective as complete serum in reducing the uptake of liposomal phospholipid. A gamma-globulin fraction failed to exhibit any effect on the uptake of [14C]phosphatidylcholine by the cells. All protein fractions which were able to inhibit cellular uptake of liposomal phospholipid were shown to bind to the phospholipid vesicles. Furthermore, lipid vesicles reincubated with fetal calf serum and then separated from it showed reduced transfer of labeled phosphatidylcholine ot parenchymal cells. These observation were taken to suggest that the diminished uptake of liposomal lipid may be caused by a modification of tm proteins. On the other hand, we cannot rule out that plasma membrane modifications are involved in the mechanism of inhibition as well.  相似文献   

14.
Since calcium-activated neutral proteinase (CANP; calpain) activation occurs at the plasmalemma and the enzyme is found in myelin, we examined myelin lipid activation of brain CANP. Purified lipids were dried, sonicated and incubated with purified myelin CANP. The CANP was assayed using [14C]azocasein as substrate and the Ca2+ concentration ranged from 2 microM for muCANP to 5 mM for mCANP. Phosphatidylinositol (PI), phosphatidylserine (PS) and dioleoylglycerol stimulated the mCANP activity by 193, 89 and 78%, respectively. PI stimulated both m- and muCANP in a concentration-dependent manner, while phosphatidylcholine was least effective. Cerebroside and sulfatide at higher concentrations (750 microM) were stimulatory. The phospholipid (PL)-mediated activation was inhibited by the PL-binding drug trifluoperazine. PI reduced the Ca2+ requirement for CANPs significantly (20-fold). These results suggest that acidic lipids and particularly acidic phospholipids activate membrane CANP.  相似文献   

15.
Ultracentrifugally isolated human serum high density lipoproteins of d 1.063-1.21 (HDL) were incubated with egg yolk lipoproteins of d < 1.006 for up to 24 hr at various concentrations. Transfer of HDL cholesterol esters to egg yolk lipoproteins occurred simultaneously with transfer of glycerides from egg yolk lipoproteins to HDL. These observations show that exchange of lipids can take place between lipoproteins in the absence of other serum proteins and enzymes. The mole ratios of HDL cholesterol esters to glycerides approached an integral value of 1 : 1 during the course of the incubation. These results suggest that lipid components form complexes within the HDL structure.  相似文献   

16.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

17.
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.  相似文献   

18.
The proteins of cerebrospinal fluid (CSF) and ventricular fluid have been analyzed by two-dimensional electrophoresis (2DE) and the patterns compared with autologous serum. Fourteen proteins were specifically identified by immunoprecipitation followed by 2DE, or by blotting 2DE gels to nitrocellulose and detection by peroxidase staining. Proteins in CSF and serum with high and low affinity for the ligands, protein A, Cibacron Blue, and concanavalin A, were also characterized by 2DE. The 2DE profiles of CSF and serum proteins were similar and indicated that a relatively nonselective filtration mechanism based on protein size is the major determinant for the overall pattern of CSF proteins. The classic CSF-enriched or CSF-specific proteins, beta-trace, prealbumin, transferrin, and beta-2-microglobulin, were identified according to 2DE coordinates. Charge differences between CSF and serum for transferrin and prealbumin were identified. In addition, a large number of additional CSF-enriched or CSF-specific proteins of high, intermediate, and low molecular weight, all predominantly anodic in mobility, were identified. Three acidic protein complexes, heterogeneous in charge and molecular weight, were characterized as constituents of normal CSF, and two of these are increased in patients with inflammatory diseases of the CNS. All three proteins and several other proteins unique to CSF bound to Cibacron Blue-Sepharose. The use of 2DE in conjunction with affinity chromatography and sensitive protein stains enlarged the number of proteins previously identified as unique to CSF. By a modified 2DE and silver staining procedure, most of these proteins were visible without prior concentration of CSF.  相似文献   

19.
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes   总被引:2,自引:0,他引:2  
G Li  P F Knowles  D J Murphy  I Nishida  D Marsh 《Biochemistry》1989,28(18):7446-7452
Lipid-protein interactions in thylakoid membranes, and in the subthylakoid membrane fractions containing either photosystem 1 or photosystem 2, have been studied by using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted membrane lipids interacting directly with the integral membrane proteins. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with the membrane proteins and to determine the selectivity between the different lipid classes for the lipid-protein interaction. The fractions of motionally restricted lipid in the thylakoid membrane are 0.36, 0.39, and 0.53, for the spin-labeled monogalactosyldiacylglycerol, phosphatidylcholine, the phosphatidylglycerol, respectively. Spin-labeled monogalactosyldiacylglycerol exhibits very little preferential interaction over phosphatidylchline, which suggests that part of the role of monogalactosyldiacylglycerol in thylakoid membranes is structural, as is the case for phosphatidylcholine in mammalian membranes. Spin-labeled phosphatidylglycerol shows a preferential interaction over the corresponding monogalactosyldiacylglycerol and phosphatidylcholine analogues, in contrast to the common behavior of this lipid in mammalian systems. This pattern of lipid selectivity is preserved in both the photosystem 1 and photosystem 2 enriched subthylakoid membrane fractions.  相似文献   

20.
The structural and functional alterations within the PSⅡ membrane from phosphatidylcholine reconstitution and Triton X-100 (TX-100) treatment were studied by using Fourier transform-infrared (FT-IR) spectroscopic technique and oxygen electrode. Phosphatidylcholine reconstitution showed no significant effect on the protein secondary structures of PSⅡ membrane but an increase of the rate of PSⅡ-mediated oxygen-evolution. The phosphatidylcholine lipids with different length of acyl chains displayed different capabilities to stimulate oxygen-evolution. In contrast, perturbation of the bilayer lipids by TX-100 resulted in obvious changes of the protein secondary structures within the PSⅡ membrane and in the loss of the PSⅡ-mediated oxygen-evolving activity. The results indicate the importance of membrane integrity in maintaining the stability of the photosynthetic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号