首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TPK1 and TPK2 encode both isoforms of protein kinase A (PKA) catalytic subunits in Candida albicans. Mutants lacking both TPK1 alleles showed defective hyphal morphogenesis on solid inducing media, whereas in liquid hypha, formation was affected slightly. In contrast, tpk2 mutants were only partially morphogenesis defective on solid media, whereas a strong block was observed in liquid. In addition, the yeast forms of tpk2-- but not tpk1-- mutants were completely deficient in invading agar. Because Tpk1p and Tpk2p differ in their N-terminal domains of approximately 80--90 amino acids, while the catalytic portions are highly homologous, the functions of hybrid Tpk proteins with exchanged N-terminal domains were tested. The results demonstrate that the catalytic portions mediate Tpk protein specificities with regard to filamentation, whereas agar invasion is mediated by the N-terminal domain of Tpk2p. Homozygous tpk1 and tpk2 mutants grew normally; however, a tpk2 mutant strain containing a single regulatable TPK1 allele (PCK1p-TPK1) at low expression levels was severely growth defective. It was completely blocked in hyphal morphogenesis and was stress resistant to high osmolarities or temperatures. Thus, both Tpk isoforms in C. albicans share growth functions but, unlike Saccharomyces cerevisiae isoforms, they have positive, specific roles in filament formation in different environments.  相似文献   

2.
In the pathogen Candida albicans protein kinase A (PKA) catalytic subunit is encoded by two genes TPK1 and TPK2 and the regulatory subunit by one gene, BCY1. PKA mediates several cellular processes such as cell cycle regulation and the yeast to hyphae transition, a key factor for C. albicans virulence. The catalytic isoforms Tpk1p and Tpk2p share redundant functions in vegetative growth and hyphal development, though they differentially regulate glycogen metabolism, the stress response pathway and pseudohyphal formation. In Saccharomyces cerevisiae it was earlier reported that BCY1 overexpression not only increased the amount of TPK3 mRNA but also its catalytic activity. In C. albicans a significant decrease in Bcy1p expression levels was already observed in tpk2Δ null strains. In this work we showed that the upregulation in Bcy1p expression was observed in a set of strains having a TPK1 or TPK2 allele reintegrated in its own locus, as well as in strains expressing the TPKs under the control of the constitutive ACT1 promoter. To confirm the cross regulation event between Bcy1p and Tpkp expression we generated a mutant strain with the lowest PKA activity carrying one TPK1 and a unique BCY1 allele with the aim to obtain two derived strains in which BCY1 or TPK1 were placed under their own promoters inserted in the RPS10 neutral locus. We found that placing one copy of BCY1 upregulated the levels of Tpk1p and its catalytic activity; while TPK1 insertion led to an increase in BCY1 mRNA, Bcy1p and in a high cAMP binding activity. Our results suggest that C. albicans cells were able to compensate for the increased levels of either Tpk1p or Tpk2p subunits with a corresponding elevation of Bcy1 protein levels and vice versa, implying a tightly regulated mechanism to balance holoenzyme formation.  相似文献   

3.
Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-mediated cyclic AMP (cAMP) signal that induces a protein phosphorylation cascade. In yeast mutants (tpk1w1, tpk2w1, and tpk3w1) containing reduced activity of cAMP-dependent protein kinase, fermentable sugars, as opposed to nonfermentable carbon sources, induced a permanent hyperaccumulation of cAMP. This finding confirms previous conclusions that fermentable sugars are specific stimulators of cAMP synthesis in yeast cells. Despite the huge cAMP levels present in these mutants, deletion of the gene (BCY1) coding for the regulatory subunit of cAMP-dependent protein kinase severely reduced hyperaccumulation of cAMP. Glucose-induced hyperaccumulation of cAMP was also observed in exponential-phase glucose-grown cells of the tpklw1 and tpk2w1 strains but not the tpk3w1 strain even though addition of glucose to glucose-repressed wild-type cells did not induce a cAMP signal. Investigation of mitochondrial respiration by in vivo 31P nuclear magnetic resonance spectroscopy showed the tpk1w1 and tpk2w1 strains, to be defective in glucose repression. These results are consistent with the idea that the signal transmission pathway from glucose to adenyl cyclase contains a glucose-repressible protein. They also show that a certain level of cAMP-dependent protein phosphorylation is required for glucose repression. Investigation of the glucose-induced cAMP signal and glucose-induced activation of trehalase in derepressed cells of strains containing only one of the wild-type TPK genes indicates that the transient nature of the cAMP signal is due to feedback inhibition by cAMP-dependent protein kinase.  相似文献   

4.
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3? mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.  相似文献   

5.
6.
7.
Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 degrees C without preconditioning but both acquired almost the same level of thermotolerance after 60 min of preconditioning. Both strains showed equal induction of trehalose-6-phosphate synthase and accumulated equal levels of trehalose during the treatment. The conditional mutant ts--187 synthesized no proteins during the preconditioning heat treatment but nevertheless acquired thermotolerance, albeit to a lesser degree than the corresponding wildtype strain. Induction of trehalose-6-phosphate synthase and accumulation of trehalose were reduced to a similar extent. These results show that acquisition of thermotolerance and accumulation of trehalose are closely correlated during heat preconditioning and are modulated by protein synthesis but do not require it.  相似文献   

8.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

9.
10.
Incubation of Saccharomyces cerevisiae at sub-lethal temperatures results in an increase in thermotolerance. This process is dependent not only on the sub-lethal temperature but also on the duration of sub-lethal heating. This indicates that the mechanism inducing thermotolerance is a time/temperature dose response. Other factors that induce thermotolerance include exposure to ethanol, sorbic acid and low external pH values. These factors induce thermotolerance after incubation in the presence of protein synthesis inhibitors, and they are all known to affect the intracellular pH (pHi). The acquisition of increased thermotolerance is minimal with sub-lethal heating under neutral external pH conditions. However, when the external pH is reduced to 4.0 the level of induced thermotolerance increases to a maximum value. Using a specific ATPase inhibitor, diethylstilboestrol (DES), ATPase activity was shown to be essential for the cell to survive heat stress. In addition, measurement of acid efflux, or ATPase activity, revealed that proton pumping from the cell increased by approximately 50% at sublethal temperatures that induce thermotolerance. This work has clearly implicated pHi perturbation as the triggering mechanism conferring thermotolerance on S. cerevisiae.  相似文献   

11.
12.
Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans   总被引:2,自引:0,他引:2  
External signals induce the switch from a yeast to a hyphal growth form in the fungal pathogen Candida albicans. We demonstrate here that the catalytic subunit of a protein kinase A (PKA) isoform encoded by TPK2 is required for internal signalling leading to hyphal differentiation. TPK2 complements the growth defect of a Saccharomyces cerevisiae tpk1-3 mutant and Tpk2p is able to phosphorylate an established PKA-acceptor peptide (kemptide). Deletion of TPK2 blocks morphogenesis and partially reduces virulence, whereas TPK2 overexpression induces hyphal formation and stimulates agar invasion. The defective tpk2 phenotype is suppressed by overproduction of known signalling components, including Efg1p and Cek1p, whereas TPK2 overexpression reconstitutes the cek1 but not the efg1 phenotype. The results indicate that PKA activity of Tpk2p is an important contributing factor in regulating dimorphism of C. albicans.  相似文献   

13.
Yeast cells show an adaptive response to a mild heat shock, resulting in thermotolerance acquisition. This is accompanied by induction of heat-shock protein (hsp) synthesis and rapid accumulation of trehalose. Genetic approaches to determine the specific role of trehalose in heat-induced thermotolerance in Saccharomyces cerevisiae have been hampered by the finding that deletion of TPS1 , the gene encoding trehalose-6-phosphate synthase, causes a variety of pleiotropic effects, including inability to grow on glucose-containing media. Here, we have studied a tps1 mutant of the yeast Schizosaccharomyces pombe that reportedly has no such growth defects. We show that tps1 mutants have a serious defect in heat shock-induced acquisition of thermotolerance if conditioned at highly elevated temperatures (40–42.5°C), which, in wild-type cells, prevent hsp but not trehalose synthesis. In contrast, hsp synthesis appears to become particularly important under conditions in which trehalose synthesis is either absent (in tps1 mutant strains) or not fully induced (conditioning at moderately elevated temperatures, i.e. 35°C). In addition, pka1 mutants deficient in cAMP-dependent protein kinase were examined. Unconditioned pka1 cells had low levels of trehalose but a high basal level of thermotolerance. It was found that pka1 mutant cells, contrary to wild-type cells, accumulated large amounts of trehalose, even during a 50°C treatment. pka1 tps1 double mutants lacked this ability and showed reduced intrinsic thermotolerance, indicating a particularly important role for trehalose synthesis, which takes place during the challenging heat shock.  相似文献   

14.
We have cloned the Candida albicans TPK2 gene encoding a cAMP-dependent protein kinase (PKA) catalytic subunit and generated a tpk2 homozygous null mutant to assess its ability to germinate in liquid media. N-acetylglucosamine (GlcNAc)-induced germ-tube formation was attenuated in the tpk2 strain and enhanced by compounds that are known to increase the PKA activity in situ. Germination was completely blocked in the presence of the myristoylated derivative of the heat-stable PKA inhibitor (MyrPKI). These results indicate that TPK1 acts positively in regulating the morphogenetic transition in C. albicans in the absence of the TPK2 gene. We were able to identify an mRNA from this second form of PKA in both wild-type and tpk2 null mutant cells. We found that PKA activity measured in the mutant lacking the TPK2 gene was about 10% of that displayed by the wild-type. The finding that the germinative response of tpk2 null mutant to serum was severely diminished at low serum concentrations indicates that the level of PKA is an important determinant of filamentous growth at low serum concentrations. The extent of germination attained at higher serum concentrations (5%) was similar in the wild-type and in the tpk2 null mutant strains suggesting that under these conditions germination was triggered through a PKA-independent pathway.  相似文献   

15.
Recent studies have shown that heat shock proteins and trehalose synthesis are important factors in the thermotolerance of the fission yeast Schizosaccharomyces pombe. We examined the effects of trehalose-6-phosphate (trehalose-6P) synthase overexpression on resistance to several stresses in cells of S. pombe transformed with a plasmid bearing the tps1 gene, which codes for trehalose-6P synthase, under the control of the strong thiamine-repressible promoter. Upon induction of trehalose-6P synthase, the elevated levels of intracellular trehalose correlated not only with increased tolerance to heat shock but also with resistance to freezing and thawing, dehydration, osmostress, and toxic levels of ethanol, indicating that trehalose may be the stress metabolite underlying the overlap in induced tolerance to these stresses. Among the isogenic strains transformed with this construct, one in which the gene coding for the trehalose-hydrolyzing enzyme, neutral trehalase, was disrupted accumulated trehalose to a greater extent and was more resistant to the above stresses. Increased trehalose concentration is thus a major determinant of the general stress protection response in S. pombe.  相似文献   

16.
17.
The response of a yeast unsaturated fatty acid auxotroph, defective in delta 9-desaturase activity, to heat and ethanol stresses was examined. The most heat- and ethanol-tolerant cells had membranes enriched with oleic acid (C18:1), followed in order by cells enriched with linoleic (C18:2) and linolenic (C18:3) acids. Cells subjected to a heat shock (25-37 degrees C for 30 min) accumulated trehalose and synthesized typical heat shock proteins. Although there were no obvious differences in protein profiles attributable to lipid supplementation of the mutant, relative protein synthesis as determined by densitometric analysis of autoradiograms suggested that hsp expression was different. However, there was no consistent relationship between the synthesis of heat shock proteins and the acquisition of thermotolerance in the lipid supplemented auxotroph or related wild type. Furthermore, trehalose accumulation was also not closely related to stress tolerance. On the other hand, the data presented indicated a more consistent role for membrane lipid composition in stress tolerance than trehalose, heat shock proteins, or ergosterol. We suggest that the sensitivity of C18:3-enriched cells to heat and ethanol may be attributable to membrane damage associated with increases in membrane fluidity and oxygen-derived free radical attack of membrane lipids.  相似文献   

18.
The Dd PK2 gene codes for a putative protein of 648 amino acids with a C-terminal half sharing high homology with protein kinase A catalytic subunits from other organisms. In order to find out more about the physiological role of the Dd PK2 kinase, its gene, and a version having a frame shift mutation in the middle of the catalytic region, were overexpressed in developing Dictyostelium cells. Both the intact gene (K-) and the frame shift mutant (Kdel-) caused rapid development with spores formed in 16-18 hours compared to the 24 hours required by their parent. This result was confirmed by the pattern of expression of some developmentally regulated genes. Other rapid developing strains (rde) are activated in the cAMP second messenger system. Both K- and Kdel-containing strains have lower cAMP levels than the parental strain during late development, thus resembling rdeC mutants. K-cells (but not Kdel-cells) produced bizarre fruiting bodies with many prostrate forms. The parallel with rde mutants was confirmed by demonstrating that K-cells are able to form spores in submerged monolayer culture. Furthermore, K-cells have about four times more protein kinase A (cAPK) activity than wild-type cells. These results indicate that the N-terminal domain of Dd PK2 is sufficient to influence cAMP levels and to provoke rapid development, whereas kinase activity seems to be required for the sporogenous phenotype. The association between elevated cAPK and Dd PK2 overexpression phenotype further indicates a role for cAPK in the formation of spores.  相似文献   

19.
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.  相似文献   

20.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号