首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ren GP  Abbott RJ  Zhou YF  Zhang LR  Peng YL  Liu JQ 《Heredity》2012,108(5):552-562
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora.  相似文献   

2.
We have tested whether Scabiosa columbaria s. str. could have originated by recent homoploid hybrid speciation because it is of intermediate morphology and is distributed in areas under glacial influence. Existing morphological and new RAPD data for 11 ingroup populations were analysed using multivariate statistics. Most methods indicated that S. columbaria s. str. could be the first example for a homoploid hybrid origin from Central Europe although a rigorous proof was missing partly because of ongoing introgression. Sequence variation was absent for 5,000 bp from 11 regions supporting a postglacial origin of S. columbaria s. str. An analysis of realized macroclimatic niches using GIS data showed that the niches of S. columbaria s. str. were partly intermediate between its putative parental species rather than extreme as often found in other homoploid hybrids. This could be due to geographical preconditions: large new habitats were available in postglacial Europe while in the case of most other homoploid hybrids only ecologically challenging habitats were not occupied by parental taxa.  相似文献   

3.
Homoploid hybrid speciation occurs through stabilization of a hybrid segregate (or segregates) isolated by premating and/or postmating barriers from parent taxa. Theory predicts that ecological and spatial isolation are of critical importance during homoploid hybrid speciation, and all confirmed homoploid hybrid species are ecologically isolated from their parents. Until recently, such species have been identified long after they originated, and consequently it has not been possible to determine the relative importance of spatial and ecological isolation during their origin. Here we present evidence for the recent origin (within the past 300 years) of a new homoploid hybrid species, Senecio squalidus (Asteraceae), in the British Isles, following long-distance dispersal of hybrid material from a hybrid zone between S. aethnensis and S. chrysanthemifolius on Mount Etna, Sicily, Italy. Historical records show that such hybrid material from Sicily was introduced to the Oxford Botanic Garden in Britain in the early part of the 18th century and that S. squalidus began to spread from there after approximately 90 years. A survey of randomly amplified polymorphic DNA/intersimple sequence repeats (RAPD/ISSR) marker variation demonstrated that S. squalidus is a diploid hybrid derivative of S. aethnensis and S. chrysanthemifolius that grow at high and low altitudes, respectively, on Mount Etna and that form a hybrid zone at intermediate altitudes. Senecio squalidus contained 11 of 13 RAPD/ISSR markers that were recorded at high frequency in S. chrysanthemifolius but were absent or occurred at low frequency in S. aethnensis, and 10 of 13 markers for which the reverse was true. Bayesian admixture analysis showed that all individuals of S. squalidus surveyed were of mixed ancestry with relatively high mean proportions of ancestry derived from both S. chrysanthemifolius and S. aethnensis (0.644 and 0.356, respectively). We argue that long-distance isolation of hybrid material from its parents on Mount Etna would have helped favor the origin and establishment of S. squalidus in the British Isles, regardless of whether the initial hybrid material introduced to Britain was preadapted to local conditions.  相似文献   

4.
The origin of new diploid, or homoploid, hybrid species is associated with rapid genomic restructuring in the hybrid neospecies. This mode of speciation has been best characterized in wild sunflower species in the genus Helianthus, where three homoploid hybrid species (H. anomalus, H. deserticola, and H. paradoxus) have independently arisen via ancient hybridization events between the same two parental species (H. annuus and H. petiolaris). Most previous work examining genomic restructuring in these sunflower hybrid species has focused on chromosomal rearrangements. However, the origin of all three homoploid hybrid sunflower species also is associated with massive proliferation events of Ty3/gypsy-like retrotransposons in the hybrid species' genomes. We compared the genomic organization of these elements in the parent species and two of the homoploid hybrid species using fluorescence in situ hybridization (FISH). We found a significant expansion of Ty3/gypsy-like retrotransposons confined to the pericentromeric regions of two hybrid sunflower species, H. deserticola and H. paradoxus. In contrast, we detected no significant increase in the frequency or extent of dispersed retrotransposon populations in the hybrid species within the resolution limits of our assay. We discuss the potential role that transposable element proliferation and localization plays in the evolution of homoploid hybrid species.  相似文献   

5.
Although homoploid hybrid speciation is increasingly recognized as an important phenomenon in plant evolution, its role in adaptive radiations is poorly documented. We studied a clade of seven extant species of Scaevola that are endemic to the Hawaiian Islands and show substantial ecological and morphological diversity. We estimated the genealogies for alleles isolated from multiple accessions of each species at four nuclear loci: the ITS region, and the introns of three nuclear genes, LEAFY (LFY), NITRATE REDUCTASE (NIA), and GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (G3PDH). For five of the seven species, there was complete concordance among the genealogies estimated from the four loci and, when all four regions were combined, the relationships among these five species were fully resolved. Inclusion of alleles from the remaining two species, S. procera and S. kilaueae, resulted in incongruence among loci, which appears to reflect a history of hybridization. Based on the distribution of alleles, we infer that S. procera is the result of a homoploid hybrid speciation event between S. gaudichaudii and S. mollis and that S. kilaueae is probably the result of hybrid speciation between S. coriacea and S. chamissoniana. In each case the inferred hybridization is consistent with morphological, ecological, and geographic information. We conclude that homoploid hybrid speciation may be more common than is perceived and may play a role in generating novel combinations of adaptive traits that arise during island radiations.  相似文献   

6.
Molecular approaches have greatly increased the number of confirmed homoploid hybrids, which suggests that the frequency of this phenomenon was underestimated in the past because it was much more difficult to detect than allopolyploidy. Centaurea is a suitable model group for studying homoploid speciation, as hybridization events have been commonly reported for this genus. Based on this, here we study Centaurea × forsythiana, a naturally occurring homoploid hybrid between two Sardinian endemics, C. horrida and C. filiformis, using a molecular approach involving nuclear and plastid markers, to understand the underlying population dynamics between homoploid hybrids and their parents. Our results confirm that C. × forsythiana is a hybrid between the above‐mentioned species and define the roles of the parents. Plastid markers point towards C. horrida as the maternal progenitor, and nuclear markers reveal that the other parental species, C. filiformis, is itself an old, stabilized homoploid hybrid related to the C. paniculata complex from the Italian mainland. Homoploid hybrid speciation is discussed and C. × forsythiana and C. filiformis are compared with other similar examples. The study confirms the importance of introgression between parental species mediated by hybrids and its potential implications in conservation. Furthermore, it shows how hybridization studies become even more complex when the parents are themselves of probable hybrid origin. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 453–467.  相似文献   

7.
Abstract.— Experimental and comparative evidence implies that homoploid hybrid speciation is a reproducible process, mediated in part by ecological selection. Here, molecular data from the chloroplast genome and 17 nuclear microsatellite loci were employed to determine whether a well-documented homoploid hybrid species, Helianthus paradoxus , has arisen multiple times. Helianthus paradoxus is ecologically divergent from its parental species, and has a disjunct geographic distribution consistent with multiple origins. The molecular data, however, strongly support a single hybrid origin. First, all sampled populations of H. paradoxus are fixed for a single chloroplast DNA (cpDNA) haplotype, whereas local populations of both parental species, H. annuus and H. petiolaris , have multiple cpDNA haplotypes. Second, H. paradoxus populations form a single, well-supported clade (99.8% bootstrap support) in a neighbor-joining tree based on microsatellite allele frequencies. The microsatellite data also tentatively place the origin of H. paradoxus between 75,000 years and 208,000 years before present, indicating that anthropogenic disturbance likely did not play a role in the formation of this species. Finally, the genetic structure of this species is not consistent with passive riparian dispersal, which has been suggested for other wetland plant species, but may be explained by dispersal mechanisms implicated for H. annuus , such as large migratory mammals.  相似文献   

8.
The ecological genetics of homoploid hybrid speciation   总被引:1,自引:0,他引:1  
Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.  相似文献   

9.
A phylogenetic analysis of DNA sequences from the internal transcribed spacer (ITS), the external transcribed spacer (ETS), and the 5.8S regions of 18S-26S nuclear rDNA from all diploid species of Stephanomeria and related genera shows that Stephanomeria does not include either Munzothamnus blairii (previously S. blairii) or Pleiacanthus spinosus (previously S. spinosa). Without these two taxa, Stephanomeria is a well-supported (100% bootstrap), monophyletic group of ten perennial and six annual species. Munzothamnus blairii and Pleiacanthus spinosus, both now considered members of monotypic genera, had been placed in Stephanomeria primarily because they have the same chromosome number as Stephanomeria and similar pollen surface features, but many disparities were ignored in previous classifications. Within Stephanomeria, an unsuspected sister relationship was detected between the montane S. lactucina and coastal S. cichoriacea. A second clade contained all the annual taxa and five of the perennial species. Among the annuals, strong bootstrap support was obtained for the previously recognized relationships between S. diegensis and S. exigua (98%) and between S. malheurensis and its progenitor, S. exigua subsp. coronaria (96%). Among the five perennial species that constitute a clade with the annuals, the recently described S. fluminea was shown to be sister to S. runcinata, and both of them were closely allied to S. tenuifolia and S. thurberi. The clade including the annuals (and five of the perennial species) was subtended by perennial lineages and pairwise divergence values among the annual taxa were much lower than among the perennial taxa as a group (though not too different than among the perennials in the same clade). The annuals probably originated recently within the genus.  相似文献   

10.
Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus . Comparisons of gene expression between S. aethnensis , S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus , suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus . We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants.  相似文献   

11.
Hybridization is increasingly seen as a trigger for rapid evolution and speciation. To quantify and qualify divergence associated with recent homoploid hybrid speciation, we compared quantitative trait (QT) and molecular genetic variation between the homoploid hybrid species Senecio squalidus and its parental species, S. aethnensis and S. chrysanthemifolius, and also their naturally occurring Sicilian hybrids. S. squalidus originated and became invasive in the United Kingdom following the introduction of hybrid plants from Mount Etna, Sicily, about 300 years ago. We recorded considerable molecular genetic differentiation between S. squalidus and its parents and their Sicilian hybrids in terms of both reduced genetic diversity and altered allele frequencies, potentially due to the genetic bottleneck associated with introduction to the United Kingdom. S. squalidus is also distinct from its parents and Sicilian hybrids for QTs, but less so than for molecular genetic markers. We suggest that this is due to resilience of polygenic QTs to changes in allele frequency or lack of selection for hybrid niche divergence in geographic isolation. While S. squalidus is intermediate or parental-like for most QTs, some trangressively distinct traits were observed, which might indicate emerging local adaptation in its invasive range. This study emphasizes the important contribution of founder events and geographic isolation to successful homoploid hybrid speciation.  相似文献   

12.
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.  相似文献   

13.
We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene -type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals.  相似文献   

14.
The origin of cultivated tree peonies, known as the ‘king of flowers'' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication.  相似文献   

15.
There is a growing appreciation for the importance of hybrid speciation in angiosperm evolution. Here, we show that Yucca gloriosa (Asparagaceae: Agavoideae) is the product of intersectional hybridization between Y. aloifolia and Y. filamentosa. These species, all named by Carl Linnaeus, exist in sympatry along the southeastern Atlantic coast of the United States. Yucca gloriosa was found to share a chloroplast haplotype with Y. aloifolia in all populations sampled. In contrast, nuclear gene‐based microsatellite markers in Y. gloriosa are shared with both parents. The hybrid origin of Y. gloriosa is supported by multilocus analyses of the nuclear microsatellite markers including principal coordinates analysis (PCO), maximum‐likelihood hybrid index scoring (HINDEX), and Bayesian cluster analysis (STRUCTURE). The putative parental species share only one allele at a single locus, suggesting there is little to no introgressive gene flow occurring between these species and Y. gloriosa. At the same time, diagnostic markers are segregating in Y. gloriosa populations. Lack of variation in the chloroplast of Y. aloifolia, the putative maternal parent, makes it difficult to rule out multiple hybrid origins of Y. gloriosa, but allelic variation at nuclear loci can be explained by a single hybrid origin of Y. gloriosa. Overall, these data provide strong support for the homoploid hybrid origin of Y. gloriosa.  相似文献   

16.
Homoploid hybrid speciation has been recognized for its potential rapid completion, an idea that has received support from experimental and modeling studies. Following initial hybridization, the genomes of parental species recombine and junctions between chromosomal blocks of different parental origin leave a record of recombination and the time period before homogenization of the derived genome. We use detailed genetic maps of three hybrid species of sunflowers and models to estimate the time required for the stabilization of the new hybrid genome. In contrast to previous estimates of 60 or fewer generations, we find that the genomes of three hybrid sunflower species were not stabilized for hundreds of generations. These results are reconciled with previous research by recognizing that the stabilization of a hybrid species' genome is not synonymous with hybrid speciation. Segregating factors that contribute to initial ecological or intrinsic genetic isolation may become stabilized quickly. The remainder of the genome likely becomes stabilized over a longer time interval, with recombination and drift dictating the contributions of the parental genomes. Our modeling of genome stabilization provides an upper bound for the time interval for reproductive isolation to be established and confirms the rapid nature of homoploid hybrid speciation.  相似文献   

17.
Abstract: Superimposed nucleotide additivity patterns (SNAPs) were detected from direct sequences of the nuclear ribosomal DNA internal transcribed spacers in a complex of perennial Sidalcea species (Malvaceae) from the Pacific Northwest of the United States. Although only 2.8 % sequence variation exists among the eight ITS accessions, parsimony analysis identified two distinct lineages within this complex consistent with known ploidy levels. Six SNAPs were identified in a known tetraploid S. virgata, suggesting allopolyploid origins from diploid S. virgata and one of two hexaploid Sidalcea species. A dosage effect detected at all six SNAP sites is consistent with the unequal sized parental genomes of allopolyploid S. virgata.  相似文献   

18.
Can the complex phenotypes that characterize naturally occurring hybrid species be re-created in early-generation artificial hybrids? We address this question with three homoploid hybrid species (Helianthus anomalus, Helianthus deserticola, Helianthus paradoxus) and their ancestral parents (Helianthus annuus, Helianthus petiolaris) that are phenotypically distinct and ecologically differentiated. These species, and two synthetic hybrid populations of the ancestral parents, were characterized for morphological, physiological, and life-history traits in greenhouse studies. Among the synthetic hybrids, discriminant analysis identified a few individuals with the multitrait phenotype of the natural hybrid species: 0.7%-1.1% were H. anomalus-like, 0.5%-13% were H. deserticola-like, and only 0.4% were H. paradoxus-like. These relative frequencies mirror previous findings that genetic correlations are favorable for generating the hybrid species' phenotypes, and they correspond well with phylogeographic evidence that demonstrates multiple natural origins of H. deserticola and H. anomalus but a single origin for H. paradoxus. Even though synthetic hybrids with hybrid species phenotypes are rare, their phenotypic correlation matrices share most of the same principal components (eigenvectors), setting the stage for predictable recovery of hybrid species' phenotypes from different hybrid populations. Our results demonstrate past hybridization could have generated hybrid species-like multitrait phenotypes suitable for persistence in their respective environments in just three generations after initial hybridization.  相似文献   

19.
Despite sampling of up to 25kb of chloroplast DNA sequence from 24 species in Sileneae a number of nodes in the phylogeny remain poorly supported and it is not expected that additional sequence sampling will converge to a reliable phylogenetic hypothesis in these parts of the tree. The main reason for this is probably a combination of rapid radiation and substitution rate heterogeneity. Poor resolution among closely related species are often explained by low levels of variation in chloroplast data, but the problem with our data appear to be high levels of homoplasy. Tree-like cpDNA evolution cannot be rejected, but apparent incongruent patterns between different regions are evaluated with the possibility of ancient interspecific chloroplast recombination as explanatory model. However, several major phylogenetic relationships, previously not recognized, are confidently resolved, e.g. the grouping of the two SW Anatolian taxa S. cryptoneura and S. sordida strongly disagrees with previous studies on nuclear DNA sequence data, and indicate a possible case of homoploid hybrid origin. The closely related S. atocioides and S. aegyptiaca form a sister group to Lychnis and the rest of Silene, thus suggesting that Silene may be paraphyletic, despite recent revisions based on molecular data.  相似文献   

20.
We present a maximum likelihood tree of 41 PgiC sequences for the monophyletic Stephanomeria, with 10 perennial and six annual species, widely distributed in western North America and exemplary of different speciation processes. The phylogenetic analysis represents the first use of PgiC sequences for Compositae. The annual species were originally delimited by biosystematic studies that provided evidence of their reproductive compatibility and chromosome structural homology. The perennial species are highly distinctive in morphology and have not been examined similarly. The PgiC tree provides more resolution than our previous ITS/ETS tree and reflects both past and ongoing hybridization and/or incomplete lineage sorting. Two major PgiC clades were resolved in Stephanomeria. One clade contains the genes from the annual species plus the perennial, insular endemic S. guadalupensis, which appears closely related to a monophyletic S. virgata. Stephanomeria exigua is not monophyletic. The second clade includes the genes from all other sampled perennial species and a monophyletic subclade of four genes from two annual species. The results are compared to previous studies, also using PgiC, of Clarkia (Onagraceae). Both molecular systematic and biosystematic approaches are essential to discern the very different courses of evolution in these two, well-studied genera of western North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号