首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
FLAG-tag is one of the commonly used purification technologies for recombinant proteins. An antibody, M2, specifically binds to the FLAG-tag whether it is attached to N- or C-terminus of proteins to be purified. The bound proteins are generally eluted by competition with a large excess of free FLAG peptide. This requires synthetic FLAG peptide and also removal of bound FLAG peptide for M2 column regeneration. We have shown before that arginine at mild pH can effectively dissociate protein–protein or protein–ligand interactions, e.g. in Protein-A, antigen and dye-affinity chromatography. We have tested here elution of FLAG-fused proteins by arginine for columns of M2-immobilized resin using several proteins in comparison with competitive elution by FLAG peptide or low pH glycine buffer. Active and folded proteins were successfully and effectively eluted using 0.5–1 M arginine at pH 3.5–4.4, as reported in this paper.  相似文献   

2.
Protein-A or Protein-L affinity chromatography and virus inactivation are key processes for the manufacturing of therapeutic antibodies and antibody fragments. These two processes often involve exposure of therapeutic proteins to denaturing low pH conditions. Antibodies have been shown to undergo conformational changes at low pH, which can lead to irreversible damages on the final product. Here, we review alternative downstream approaches that can reduce the degree of low pH exposure and consequently damaged product. We and others have been developing technologies that minimize or eliminate such low pH processes. We here cover facilitated elution of antibodies using arginine in Protein-A and Protein-G affinity chromatography, a more positively charged amidated Protein-A, two Protein-A mimetics (MEP and Mabsorbent), mixed-mode and steric exclusion chromatography, and finally enhanced virus inactivation by solvents containing arginine. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

3.
Elution of antibodies from a Protein-A column by aqueous arginine solutions   总被引:3,自引:0,他引:3  
Acidic pH is commonly used to elute antibodies from Protein-A affinity column, although low pH may result in aggregation of the proteins. As an alternative, here arginine was tested as an eluent and compared with a more conventional eluent of citrate. Using purified monoclonal antibodies, recovery of antibodies with 0.1M citrate, pH 3.8, was less than 50% and decreased further as the pH was increased to 4.3. At the same pH, the recovery of antibodies was greatly increased with 0.5M arginine and more so with 2M arginine. Even at pH 5.0, 2M arginine resulted in 31% recovery, although the elution under such condition showed extensive tailing. Such tailing was observed at pH 3.8 when 0.1M citrate was used. Size exclusion analysis indicated that the eluted antibodies were mostly monomeric whether eluted with citrate or arginine. This demonstrates the usefulness of arginine as an efficient eluent for Protein-A chromatography.  相似文献   

4.
Arginine is effective in suppressing aggregation of proteins and may be beneficial to be included during purification processes. We have shown that arginine reduces non-specific protein binding in gel permeation chromatography and facilitates elution of antibodies from Protein-A columns. Here we have examined the effects of arginine on binding and elution of the proteins during hydrophobic interaction (HIC) and ion- exchange chromatographies (IEC) using recombinant monoclonal antibodies (mAbs) and human interleukin-6. In the case of HIC, the proteins were bound to a phenyl-Sepharose column in the presence of ammonium sulfate (AS) with or without arginine and eluted with a descending concentration of AS. While use of 1 M AS in the loading buffer resulted in complete binding of the mAb, inclusion of 1 M arginine in loading and equilibration buffer, only when using low-substituted phenyl-Sepharose, resulted in weaker binding of the proteins. While decreasing AS concentration to 0.75 M resulted in partial elution of the mAB, elution was facilitated with inclusion of 0.5-1 M arginine. In the case of IEC, arginine was included in the loading samples. Inclusion of arginine during binding to the IEC columns resulted in a greater recovery and less aggregation even when elution was done in the absence of arginine. These results indicate that arginine enhances elution of proteins bound to the resin, suggesting its effectiveness as a solvent for elution in HIC and IEC.  相似文献   

5.
Recombinant proteins are often expressed in the form of insoluble inclusion bodies in bacteria. To facilitate refolding of recombinant proteins obtained from inclusion bodies, 0.1 to 1 M arginine is customarily included in solvents used for refolding the proteins by dialysis or dilution. In addition, arginine at higher concentrations, e.g., 0.5-2 M, can be used to extract active, folded proteins from insoluble pellets obtained after lysing Escherichia coli cells. Moreover, arginine increases the yield of proteins secreted to the periplasm, enhances elution of antibodies from Protein-A columns, and stabilizes proteins during storage. All these arginine effects are apparently due to suppression of protein aggregation. Little is known, however, about the mechanism. Various effects of solvent additives on proteins have been attributed to their preferential interaction with the protein, effects on surface tension, or effects on amino acid solubility. The suppression of protein aggregation by arginine cannot be readily explained by either surface tension effects or preferential interactions. In this review we show that interactions between the guanidinium group of arginine and tryptophan side chains may be responsible for suppression of protein aggregation by arginine.  相似文献   

6.
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc‐fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc‐fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:406–413, 2015  相似文献   

7.
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%–60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.  相似文献   

8.
The effect of deglycosylation on the physiological and functional organization of milin was studied under different denaturizing conditions. Trifluoromethanesulfonic acid mediated deglycosylation resulted in insoluble milin, which was found to be soluble only in 1.5 M GuHCl with native-like folded structure. Kinetic stability, proteolytic activity, and dimeric association were lost in deglycosylated milin. Urea-induced unfolding revealed two inactive, highly stable equilibrium intermediates at pH 7.0 and pH 2.0. These intermediates were stable between 5.5–6.5 and 5.0–6.0 M total chaotropes (urea + 1.5 M GuHCl) at pH 7.0 and pH 2.0, respectively. GuHCl-induced unfolding was cooperative and noncoincidental with a broad transition range (2.0–5.0 M) at pH 7.0 and pH 2.0. Equilibrium unfolding of deglycosylated milin by urea and GuHCl substantiates the involvement of various inactive monomeric intermediates. This study provides a way to understand the role of glycosylation in the unfolding mechanism, stability, and functional activity of the serine protease milin.  相似文献   

9.
Inconsistent results obtained with published methods for the elution of antibodies from tissue sections prompted the assessment of both old and new methods in combination with monoclonal rabbit antibodies of known, increased affinity (above 1×10-9 KD). We tested an acidic (pH 2) glycine buffer, a 6 M urea hot buffer and a 2-Mercaptoethanol, SDS buffer (2-ME/SDS). Some antibodies were not removed by the glycine pH 2 or 6 M urea hot buffers, indicating that antibodies survive much harsher conditions than previously believed. We found that the elution is dependent upon the antibody affinity and is reduced by species-specific crosslinking via a dimeric or Fab fragments of a secondary antibody. The high affinity bond of exogenous streptavidin with the endogenous biotin can be removed by 6 M urea but not by the other buffers. 2-ME/SDS buffer is superior to glycine pH 2 and 6 M urea hot elution buffers for all antibodies because of its irreversible effect on the structure of the antibodies. It also has a mild retrieving effect on some antigens present on routinely treated sections and no detrimental effect on the immunoreactivity of the tissue. Therefore, 2-ME/SDS buffer is the method of choice to perform multiple rounds of immunostaining on a single routine section.  相似文献   

10.
A strong anionic exchange resin was used to recover lactic acid directly from fermentation in an upflow fluidized bed column, resulting in 0.18 g lactic acid/g resin bound with a subsequent elution of 94%. When the culture broth was heated and adjusted pH to 8.0, 0.4 g lactic acid was bound per g resin, with a subsequent elution of 90%. L(+) and D(–) lactic acid isomers distribution was analyzed in the elution product resulting in an increase of L(+) isomer concentration. The resin did not alter its binding capacity after 23 cycles.  相似文献   

11.
It has been shown that the recovery of monomeric antibodies from protein A affinity chromatography is enhanced significantly by using arginine as an eluent. To extend the applications of arginine to antibody purification and obtain an insight into the mechanism of arginine elution, we compared arginine with citrate, guanidine hydrochloride (GdnHCl), arginine derivatives, and other amino acids in protein A chromatography. We also applied arginine to elution of polyclonal antibodies (pAbs) in antigen affinity chromatography. As described previously, arginine was effective in eluting monoclonal antibodies IgG1 and IgG4. Two arginine derivatives, acetyl-arginine and agmatine, resulted in efficient elution at pH 4.0 or higher, and this was comparable to arginine. On the other hand, other amino acids, such as glycine, proline, lysine, and histidine, are much less effective than arginine under identical pH conditions. Whereas elution increased with arginine concentration, elution with citrate was insignificant in excess of 1 M at pH 4.3. Arginine was also effective in fractionation of pAbs using antigen-conjugated affinity columns. Although GdnHCl was also effective under similar conditions, the eluted material showed more aggregation than did the protein eluted by arginine.  相似文献   

12.
Rigid macroporous cross-linked cellulose beads were prepared and used as a useful affinity medium for purification of A. niger cellulase from commercial preparation, in batch; packed bed and expanded bed modes. The beads bound 99% activity in both packed bed and expanded bed modes and upto 91% activity could be recovered by washing the adsorbent with 1 M phosphate buffer, pH 7.0. While batch adsorption and elution gave only 4-fold purification, packed bed operation gave 14-fold purification and expanded bed, the highest, 36-fold purification.  相似文献   

13.
We developed a simple purification method to purify alkaline phosphatase/anti-alkaline phosphatase IgG as immune complexes using mimetic affinity chromatography wherein the antibody was either a monospecific antibody, a bispecific antibody or a commercial polyclonal IgG conjugated with alkaline phosphatase (AP–IgG) covalently. The immune complexes or conjugates were efficiently bound on the mimetic Blue A6XL column and eluted under mild conditions (5–20 mM phosphate buffer). A similar strategy of purifying peroxidase/anti-peroxidase antibody complexes was also successfully demonstrated using the mimetic Red 3 column. Mimetic affinity chromatography thus appears to be a simple method to purify the desired monospecific or bispecific antibodies from the respective hybridomas and quadromas.  相似文献   

14.
UDP-galactose 4-epimerase from Escherichia coli is a homodimer of 39 kDa subunit with non-covalently bound NAD acting as cofactor. The enzyme can be reversibly reactivated after denaturation and dissociation using 8 M urea at pH 7.0. There is a strong affinity between the cofactor and the refolded molecule as no extraneous NAD is required for its reactivation. Results from equilibrium denaturation using parameters like catalytic activity, circular-dichroism, fluorescence emission (both intrinsic and with extraneous fluorophore 1-aniline 8-naphthalene sulphonic acid), 'reductive inhibition' (associated with orientation of NAD on the native enzyme surface), elution profile from size-exclusion HPLC and light scattering have been compiled here. These show that inactivation, integrity of secondary, tertiary and quaternary structures have different transition mid-points suggestive of non-cooperative transition. The unfolding process may be broadly resolved into three parts: an active dimeric holoenzyme with 50% of its original secondary structure at 2.5 M urea; an active monomeric holoenzyme at 3 M urea with only 40% of secondary structure and finally further denaturation by 6 M urea leads to an inactive equilibrium unfolded state with only 20% of residual secondary structure. Thermodynamical parameters associated with some transitions have been quantitated. The results have been discussed with the X-ray crystallographic structure of the enzyme.  相似文献   

15.
The effects of arginine and urea on the levels of ornithinetranscarbamylase (OTC) were investigated in relation to thephysiological functions of this enzyme in Geotrichum candidum.OTC was repressed in germinated spores to half of its initiallevel when exogenous arginine exceeded 12 mM. The repressionof OTC could not be correlated with intracellular arginine concentration.The addition of urea at the final concentration of 0.035 M increasedthe specific activity of OTC by 5.5 and 2.5 fold as comparedto enzyme levels in arginine-repressed spores and control sporesrespectively. Simultaneous addition of urea and arginine duringgermination prevented either arginine repression or urea inductionof OTC. The enzyme was partially purified from germinated sporesand isolated as a single protein band after disc electrophoresis.Two distinct pH optima for the forward reaction (pH 8.8–9)and backward reaction (pH 7.8) were found. Km values for ornithineand carbamyl phosphate were 5 x 10–3 M and 6.8 x 10–4so respectively. The Km for citrulline in the catabolic directionwas 1 x 10–2 M. Enzymes obtained from cell-free extractsof germinated spores could synthetize ATP from citrulline andADP under physiological conditions by coupling the phosphorolysisof citrulline with carbamate kinase activity. The initial rateof germination was stimulated in the presence of citrullineas the sole nitrogen source, as compared to arginine, glutamineor yeast extract. These observations suggest that citrullinemay be catabolized during germination by means of OTC ratherthan via the energy-consuming urea cycle. (Received June 26, 1971; )  相似文献   

16.
The performance of MabSelect SuRe and IgSelect affinity chromatography resins designed for process-scale purification of antibodies was investigated. Various antibodies (4 human monoclonal, 1 human polyclonal and 1 bovine polyclonal antibody and 1 Fc-fusion protein) were used to evaluate the elution pH and dynamic binding capacity of the resins. The elution pH for each human antibody was similar on MabSelect SuRe and IgSelect (pH 3.5–3.8). No significant differences in dynamic binding capacity were observed among human antibodies on MabSelect SuRe (∼20–40 mg/mL resin) and IgSelect (∼10–30 mg/mL resin). The binding capacity order for the human antibodies was the same on MabSelect SuRe and IgSelect. Using a linear pH gradient, both resins were able to partially separate monomeric and aggregated forms of the antibodies. The results indicate that these new affinity resins are powerful tools for the purification of human polyclonal antibodies from transgenic animals and oligoclonal antibodies from CHO cell cultures.  相似文献   

17.
Antibody-binding fragments (Fab) are generated from whole antibodies by treatment with papain and can be separated from the Fc component using Protein-A affinity chromatography. Commercial kits are available, which facilitate the production and purification of Fab fragments; however, the manufacturer fails to report that this method is inefficient for antibodies with VH3 domains as a result of the intrinsic variable region affinity for Protein-A. A commercially available, modified Protein-A resin (MabSelect SuRe) has been engineered for greater stability. Here, we report that an additional consequence of the modified resin is the ability to purify VH3 family Fab fragments, which cannot be separated effectively from other components of the papain digest by traditional Protein-A resin. This improvement of a commonly used procedure is of significance, as increasingly, therapeutic antibodies are being derived from human origin, where VH3 is the most abundantly used variable region family.  相似文献   

18.
To make the native LHRH immunogenic, a multimer of LHRH interspersed with T non-B peptides (r-LHRH-d2) was expressed as recombinant protein in Escherichia coli. The expression level of the recombinant protein was around 15% of the total cellular protein and it aggregated as inclusion bodies. Inclusion bodies from the bacterial cells were isolated and purified to homogeneity. Instead of high concentrations of chaotropic agents, r-LHRH- d2 was solubilized in 50 mM citrate buffer at pH 3 containing 2 M urea. The protein was refolded by 5-fold dilution (pulsatile) with cold 10 mM citrate buffer at pH 6 in presence of 0.3 M L-arginine. Purification of r-LHRH-d2 was carried out by successive passages on CM-Sepharose column at pH 6.0 which retained extraneous proteins and pH 4.8 at which r-LHRH-d2 bound to the resin. The elution was carried out by using linear salt gradient (0.1-1 M NaCl). The overall yield of the purified r-LHRH-d2 was 40% of the initial inclusion body proteins. The purity and homogeneity were confirmed by a single homogeneous peak on analytical HPLC eluting out at 29.51 min and by single band on SDS-PAGE reactive with polyvalent anti-LHRH antibodies. Mass spectroscopic analysis indicated the protein to be of 16.6 kDa which equals the theoretically expected mass. The N-terminal amino acid analysis of r-LHRH-d2 showed the sequence which corresponded to the designed protein. The CD spectrum of the refolded r-LHRH-d2 showed that the multimer has considerable beta sheet structure like the monomeric LHRH protein.  相似文献   

19.
Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding. Recently, we have observed that arginine facilitates elution of antibodies during Protein-A chromatography and solubilizes insoluble proteins from inclusion bodies, which both can be ascribed to weakening of protein-protein interactions. In order to gain understanding on why arginine is effective in reducing protein-protein interactions and suppressing aggregation, the effects of arginine on stability and solubility of pure proteins have been examined, which showed that arginine is not a protein-stabilizer, but is an aggregation suppressor. However, there is no explanation proposed so far on why arginine suppresses aggregation of proteins. This review addresses such question and then attempts to show differences between arginine and strong denaturants, which are also known as an aggregation suppressor.  相似文献   

20.
Spectroscopic, calorimetric, and proteolytic methods were utilized to evaluate the stability of the kinetically stable, differentially glycosylated, dimeric serine protease milin as a function of pH (1.0–11.0), temperature, urea, and GuHCl denaturation in presence of 8 M urea at pH 2.0. The stability of milin remains equivalent to that of native at pH 1.0–11.0. However, negligible and reversible alteration in structure upon temperature transition has been observed at pH 2.0 and with 1.6 M GuHCl. Irreversible and incomplete calorimetric transition with apparent T m > 100°C was observed at basic pH (9.0 and 10.0). Urea-induced unfolding at pH 4.0, and at pH 2.0 with GuHCl, in presence of 8 M urea also reveals incomplete unfolding. Milin has been found to exhibit proteolytic resistant in either native or denatured state against various commercial proteases. These results imply that the high conformational stability of milin against various denaturating conditions enable its potential use in protease-based industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号