首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the development of an oral vaccine against Helicobacter pylori, H. pylori urease subunit B (UreB) was expressed in a food-grade delivery vehicle, Lactococcus lactis NZ3900. The ureB gene (Genbank accession no. FJ436980) was amplified by polymerase chain reaction (PCR) from MEL-Hp27. The PCR-amplified ureB gene was cloned in the E. coli–L. lactis shuttle vector pNZ8110 and transformed into E. coli MC1061. After the transformant had been identified, the recombinant plasmid was purified and electrotransformed into L. lactis NZ3900. The conditions of UreB expression in the L. lactis transformant were optimized by orthogonal experiment. The maltose binding protein (MBP)-UreB fusion protein expressed by TB1/pMAL-c2X-ureB was used to cultivate mice polyclonal anti-UreB serum after purification by the amylose prepacked column. The Western blot method was adopted to confirm whether the UreB expressed by L. lactis transformant had immunoreactivity. The optimized conditions for UreB expression were as follows. Nisin 40 ng/ml was added to the medium when the recombinant grew to OD600≈0.30–0.40 and the induction time lasted 5 h. As a result, the maximum yield of UreB was 27.26 μg/mL of medium, and the maximum percentage of UreB in cell extracts of the L. lactis transformant reached its peak at 20.19%. Western blot analysis showed that the UreB protein expressed by L. lactis transformant had favorable immunoreactivity. All these results make an appealing case for construction of the food-grade vaccine for H. pylori.  相似文献   

2.

Aims

To determine whether the carotenoid production improves stress tolerance of lactic acid bacteria, the cloned enterococcal carotenoid biosynthesis genes were expressed in Lactococcus lactis ssp. cremoris MG1363, and the survival rate of carotenoid‐producing engineered MG1363 strain under stress condition was investigated.

Methods and Results

We cloned carotenoid biosynthesis genes from yellow‐pigmented Enterococcus gilvus. The cloned genes consisted of crtN and crtM and its promoter region were inserted into the shuttle vector pRH100, and the resulting plasmid was named pRC. The cloned crtNM was expressed using pRC in noncarotenoid‐producing L. lactis ssp. cremoris MG1363. The expression of crtNM led to the production of C30 carotenoid 4,4′‐diaponeurosporene. After exposure to 32 mmol l?1 H2O2, low pH (1.5, acidified with HCl), 20% bile acid and 12 mg ml?1 lysozyme, the survival rates of the MG1363 strain harbouring pRC were 18.7‐, 6.8‐, 8.8‐ and 4.4‐fold higher, respectively, than those of MG1363 strain harbouring the empty vector pRH100.

Conclusions

The expression of carotenoid biosynthesis genes from Ent. gilvus improves the multistress tolerance of L. lactis.

Significance and Impact of the study

First report of the improvement of multistress tolerance of lactic acid bacteria by the introduction of genes for carotenoid production.  相似文献   

3.

Background  

B. subtilis is an important organism in the biotechnological application. The efficient expression system is desirable in production of recombinant gene products in B. subtilis. Recently, we developed a new inducible expression system in B. subtilis, which directed by B. subtilis maltose utilization operon promoter P glv . The system demonstrated high-level expression for target proteins in B. subtilis when induced by maltose. However, the system was markedly repressed by glucose. This limited the application of the system as a high-expression tool in biotechnology field. The aim of this study was to further improve the P glv promoter system and enhance its expression strength.  相似文献   

4.

Background  

The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation.  相似文献   

5.
6.
7.

Aims

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.

Methods and Results

The three bacteriocin‐producing strains were grown in Macfarlane broth and in De Man–Rogosa–Sharpe (MRS) broth. For each strain, the bacterial count, pH drop and production of organic acids and bacteriocins were measured for different period of time. The ability of the probiotic candidates to inhibit Listeria ivanovii HPB 28 in co‐culture in Macfarlane broth was also examined. Lactococcus lactis subsp. lactis biovar diacetylactis UL719, L. lactis ATCC 11454 and Ped. acidilactici UL5 were able to grow and produce their bacteriocins in MRS broth and in Macfarlane broth. Each of the three candidates inhibited L. ivanovii HPB 28, and this inhibition activity was correlated with bacteriocin production. The role of bacteriocin production in the inhibition of L. ivanovii in Macfarlane broth was confirmed for Ped. acidilactici UL5 using a pediocin nonproducer mutant.

Conclusions

The data provide some evidence that these bacteria can produce bacteriocins in a complex medium with carbon source similar to those found in the colon.

Significance and Impact of the Study

This study demonstrates the capacity of lactic acid bacteria to produce their bacteriocins in a medium simulating the nutrient composition of the large intestine.  相似文献   

8.
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein−1 min−1). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μaerobic 0.09±0.03 h−1). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μaerobic 0.21±0.01 h−1, μanaerobic 0.10±0.00 h−1). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.  相似文献   

9.

Background  

Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins.  相似文献   

10.
11.

Background  

A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc) and dithiothreitol (DTT) in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis). Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria.  相似文献   

12.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

13.

Background  

Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted.  相似文献   

14.
Lactococcus lactis is a bacteria with high biotechnological potential, where is frequently used in the amino acid production and production of fermented dairy products, as well as drug delivery systems and mucosal vaccine vector. The knowledge of a functional core proteome is important extremely for both fundamental understanding of cell functions and for synthetic biology applications. In this study, we characterized the L. lacits proteome from proteomic analysis of four biotechnological strains L. lactis: L. lactis subsp. lactis NCDO2118, L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000 and L. lactis subsp. cremoris MG1363. Our label-free quantitative proteomic analysis of the whole bacterial lysates from each strains resulted in the characterization of the L. lactis core proteome that was composed by 586 proteins, which might contribute to resistance of this bacterium to different stress conditions as well as involved in the probiotic characteristic of L. lactis. Kegg enrichment analysis shows that ribosome, metabolic pathways, pyruvate metabolism and microbial metabolism in diverse environments were the most enriched. According to our quantitative proteomic analysis, proteins related to translation process were the more abundant in the core proteome, which represent an important step in the synthetic biology. In addition, we identified a subset of conserved proteins that are exclusive of the L. lactis subsp. cremoris or L. lactis subsp. lactis, which some are related to metabolic pathway exclusive. Regarding specific proteome of NCDO2118, we detected ‘strain-specific proteins’. Finally, proteogenomics analysis allows the identification of proteins, which were not previously annotated in IL1403 and MG1363. The results obtained in this study allowed to increase our knowledge about the biology of L. lactis, which contributes to the implementation of strategies that make it possible to increase the biotechnological potential of this bacterium.  相似文献   

15.
16.

The effect of Lactococcus lactis subsp. lactis strain PTCC 1403 as a potential probiotic was investigated on the growth, hematobiochemical, immune responses, and resistance to Yersinia ruckeri infection in rainbow trout. A total of 240 fish were distributed into 12 fiberglass tanks representing four groups (× 3 replicates). Each tank was stocked with 20 fish (average initial weight: 11.81 ± 0.32 g) and fed L. lactis subsp. lactis PTCC 1403 at 0 (control, T0), 1 × 109 (T1), 2 × 109 (T2), and 3 × 109 (T3) CFU/g feed for 8 weeks. The results showed enhanced protein efficiency ratio and reduced feed conversion ratio in the fish-fed T2 diet. Further, fish-fed T2 and T3 diets showed a significantly higher survival rate than the control (p < 0.05). Trypsin, lipase, and protease activities were increased in fish-fed L. lactis subsp. lactis PTCC 1403 compared to the control (p < 0.05). Fish fed with a T2 diet showed significantly (p < 0.05) lower glucose content than other groups. The blood lysozyme activity and IgM showed significantly (p < 0.05) higher values in fish-fed T2 and T3 diets than in other groups. The antioxidative responses were increased in fish-fed T2 and T3 diets (p < 0.05). After 7 days post-Y. ruckeri challenge, the cumulative mortality rate showed the lowest value in fish fed with T1 and T2 diets, while the highest value was recorded in the control group. In conclusion, the results revealed beneficial effects of L. lactis subsp. lactis PTCC 1403 on the feed efficiency, immune response, and resistance to Y. ruckeri infection in rainbow trout.

  相似文献   

17.
18.

Background  

Lactococcus garvieae is a bacterial pathogen that affects different animal species in addition to humans. Despite the widespread distribution and emerging clinical significance of L. garvieae in both veterinary and human medicine, there is almost a complete lack of knowledge about the genetic content of this microorganism. In the present study, the genomic content of L. garvieae CECT 4531 was analysed using bioinformatics tools and microarray-based comparative genomic hybridization (CGH) experiments. Lactococcus lactis subsp. lactis IL1403 and Streptococcus pneumoniae TIGR4 were used as reference microorganisms.  相似文献   

19.
K88 (F4) fimbrial adhesin, FaeG, was expressed extracellularly in Lactococcus lactis using a nisin-controlled gene expression system. The antibody response and protective efficacy of the recombinant bacteria (L. lactis [spNZ8048-faeG]) against live enterotoxigenic E. coli (ETEC) C83549 challenge were evaluated in ICR mice. Mice vaccinated with L. lactis [spNZ8048-faeG] had a significantly increased antigen-specific IgG level in the serum and decreased mortality rate (P < 0.05) compared with the control. This indicates that oral immunization of L. lactis [spNZ8048-faeG] can induce an immune-response protection upon challenge with live ETEC in ICR mice. An erratum to this article can be found at  相似文献   

20.
Purpose

The present study was undertaken to evaluate in vitro prerequisite probiotic and technological characteristics of ten Lactococcus strains isolated from traditional goat skin bags of Tulum cheeses from the Central Taurus mountain range in Turkey.

Methods

All isolates were identified based on the nucleotide sequences of the 16S rRNA gene. Eight isolates belonged to Lactococcus lactis and two belonged to Lactococcus garvieae. Probiotic potential was determined from resistance to acid and bile salt, resistance to gastric and pancreatic juices, resistance to antibiotic, auto-aggregation, co-aggregation, diacetyl, hydrogen peroxide and exopolysaccharide productions. Technological properties were verified by alcohol, NaCl and hydrogen peroxide resistance and temperature tests.

Results

L. lactis NTH7 displayed high growth at all alcohol concentrations while L. lactis NTH4 grew very well even at NaCl concentrations of 10%. All strains showed to some extent resistance to acid and bile. Five strains exhibited desirable survival in gastric juice (pH 2.0), while three strains survived in pancreatic juice (pH 8.0). All Lactococcus isolates were sensitive to ampicillin, chloramphenicol, erythromycin, vancomycin, kanamycin, gentamycin and tetracycline. Also, only L. lactis NTH7 from among the isolates showed resistance against penicillin. L. lactis NTH10 and L. lactis NTH7 had higher auto-aggregation values in comparison with all other strains. All the strains demonstrated a co-aggregation ability against model food pathogens, particularly, L. lactis NTH10 which showed a superior ability with L. monocytogenes. All the ten strains produced H2O2 and exopolysaccharide (EPS); however, diacetyl production was detected for only four strains including L. lactis NTH10.

Conclusion

These results demonstrate that the L. lactis NTH10 isolate could be regarded as a favorable probiotic candidate for future in vivo studies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号