首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear location signal   总被引:30,自引:0,他引:30  
A short sequence of predominantly basic amino acids Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val from SV40 Large T is responsible for the normal nuclear location of the protein. Alteration of Lys-128 to each of six different residues other than Arg renders Large T cytoplasmic, whereas single amino acid changes in the surrounding region impair but do not prevent nuclear accumulation. When transposed to the amino terminus of cytoplasmic Large T species, or Escherichia coli beta-galactosidase or of chicken muscle pyruvate kinase, the sequence around Lys-128 of Large T is able to direct the recipient protein to the nucleus. This demonstrates that these amino acids can be sufficient for nuclear location and can act as a nuclear location signal. A computer search of over 2500 proteins reveals that some other nuclear proteins (for example, BK virus Large T, SV40 VP2 and adenovirus 72kDa DNA binding protein) contain very similar basic tracts, but so too do some presumed non-nuclear proteins (for example, poliovirus VP3). We suggest that the related sequence acts as the nuclear location signal in the other nuclear proteins but that the sequence does not function in all cases, perhaps because it is not accessible. A similar, but shorter or less basic sequence, was detected in a number of other nuclear proteins, for example, polyoma virus Large T, SV40 VP1 and several histones. However, such sequences were also found in many other proteins. Perhaps the shorter basic sequences can also act as nuclear location signals, but to be functional they need to be exposed (for example, at the amino terminus of the protein as in SV40 VP1) or to be present in multiple copies.  相似文献   

2.
3.
The nuclear migration signal of Xenopus laevis nucleoplasmin.   总被引:46,自引:8,他引:38       下载免费PDF全文
Nucleoplasmin is the most abundant protein in the nucleus of Xenopus laevis oocytes. Its ability to target to the nucleus when microinjected into the cytoplasm has been the subject of many studies central to our understanding of how proteins segregate into nuclei. Using a cDNA clone we constructed beta-galactosidase-nucleoplasmin hybrids in modified bacterial expression vectors. The fusion proteins were expressed in Escherichia coli, purified and injected into the cytoplasm of X. laevis oocytes. The distribution of the fusion proteins between the cytoplasmic and nuclear compartments were analysed after incubation of various lengths of time. The results show that the signal sequence for nuclear transport is located close to the carboxy terminus of the protein. The signal sequence has been mapped to a small stretch of amino acids, containing a stretch of four lysines analogous to the SV40 large-T antigen signal.  相似文献   

4.
SV3T3 C120 cells contain a 145,000-dalton form of simian virus 40 (SV40) super-T antigen but little if any normal-sized large-T. The subcellular location of super-T, its DNA binding properties, and its interaction with nonviral tumor antigen (NVT) were examined. Immunofluorescence microscopy and subcellular fractionation indicated that super-T is almost exclusively nuclear. Chromatography on double-stranded DNA-cellulose showed that super-T binds to double-stranded DNA and has an elution profile indistinguishable from normal-sized large-T. Super-T also binds specifically to a fragment of SV40 DNA which contains the origin of DNA replication. However, immunoprecipitation of super-T or large-T either with anti-tumor cell serum or with anti-NVT serum from fractions obtained by sucrose density centrifugation of 32P-labeled or [35S]methionine-labeled extracts revealed clear differences in the sedimentation characteristics of these proteins. The bulk of labeled 145,000-dalton super-T sedimented between 4S and 10S, whereas the bulk of 32P-labeled large-T from normal SV40-transformed cells sedimented as two peaks at 23S to 25S and 16S to 18S. By contrast, the sedimentation properties of NVT from the SV3T3 C120 cells were similar to those normally observed with other SV3T3 cell lines. The reason for this apparent difference in complex formation between super-T and NVT and that normally observed with large-T is unclear, but it probably has no deleterious effect on the ability of super-T to maintain transformation.  相似文献   

5.
6.
Nuclear protein p68 is an RNA-dependent ATPase.   总被引:19,自引:4,他引:15       下载免费PDF全文
R D Iggo  D P Lane 《The EMBO journal》1989,8(6):1827-1831
The human nuclear antigen p68 cross reacts with a monoclonal antibody to SV40 large-T antigen. Its deduced amino acid sequence contains short motifs which place it in a large superfamily of proteins of known or putative helicase activity. Recently, a p68 subfamily (DEAD box proteins) which share more extensive regions of homology has been identified in mouse, Drosophila, Saccharomyces cerevisiae and Escherichia coli. These proteins are involved in translation, ribosome assembly, mitochondrial splicing, spermatogenesis and embryogenesis. We show here that immunopurified human p68 has RNA dependent ATPase activity. In addition, we show that the protein undergoes dramatic changes in cellular location during the cell cycle.  相似文献   

7.
Targeting bacteriophage T7 RNA polymerase to the mammalian cell nucleus   总被引:22,自引:0,他引:22  
  相似文献   

8.
The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved coding sequence in the two species. Two regions can be defined on the viral genome: the putative early region contains two large open reading frames of 1446 and 966 nucleotides, together with several split ones, and corresponds to the transforming part of the bovine papillomavirus type 1 genome, and the remaining sequences, which include two open reading frames likely to encode structural polypeptide(s). The DNA sequence is analysed and putative signals for regulation of gene expression, and homologies with the Alu family of human ubiquitous repeats and the SV40 72-bp repeat are outlines.  相似文献   

9.
A E Smith  R Smith    E Paucha 《Journal of virology》1978,28(1):140-153
A study of simian virus 40 (SV40) T-antigens isolated from productively infected CV1 cells using a variety of different extraction procedures showed that under some conditions the highest molecular weight form of T-Ag (large-T) isolated comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with large-T from SV40-transformed H65-90B cells. Other faster-migrating forms of large-T are probably generated during the extraction procedure by a protease which is active at low pH, and such forms are probably experimental artifacts. After extraction under conditions which minimize proteolytic degradation of large-T, a further form of T-antigen was isolated; this has an apparent molecular weight in the range 15,000 to 20,000 and is referred to as small-t. Fingerprint analysis of [35S]methionine-labeled SV40 proteins showed that small-t has 10 to 12 methionine peptides whereas large-T has 15 to 18 methionine peptides. All but two of the methionine tryptic peptides present in small-t are also present in large-T. The fingerprint data also showed that T-antigens have no peptides in common with SV40 VP1. Experiments using reagents which inhibit posttranslational cleavage of encephalomyocarditis virus polyproteins showed that these reagents do not affect the synthesis of small-t and suggest that it is not made by proteolytic cleavage of large-T in vivo. An alternative model, which proposes that large-T and small-t are synthesized independently, is discussed in terms of the fingerprint data and the number of methionine tryptic peptides predicted from the primary sequence of SV40 DNA.  相似文献   

10.
Cell-free synthesis of simian virus 40 T-antigens.   总被引:27,自引:18,他引:9       下载免费PDF全文
  相似文献   

11.
Incubation of crude extracts from cells lytically infected with polyoma virus in the presence of periodate-oxidized [alpha-32P]ATP led to the radioactive labeling of one main polypeptide immunoprecipitated by anti-T antigen antibodies. It was absent from extracts of mock-infected cells and exhibited an apparent Mr value of 105,000, identical with that of the large-T viral protein. This polypeptide was unambiguously identified as large-T on the basis of the heat sensitivity of the in vitro labeling in extracts from cells infected with a tsa mutant. The amount of incorporated radioactivity was found to increase linearly with that of infected cell extract and with the incubation time. Labeling resulted from the specific binding of an oxidized ATP molecule to a nucleotide binding site of the large-T protein, since it was efficiently completed by unlabeled ATP. Study of the dependence on the concentration of oxidized ATP evidenced a first order kinetic for the labeling reaction. Similar results were obtained for the large-T protein of SV40 virus.  相似文献   

12.
Cells use the interferon-induced, double-stranded-RNA-dependent protein kinase PKR as a defense against virus infections. Upon activation, PKR phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2, resulting in the cessation of protein synthesis. Viruses have evolved various strategies to counteract this cellular defense. In this paper, we show that simian virus 40 (SV40) large-T antigen can antagonize the translational inhibitory effect resulting from the activation of PKR in virus-infected cells. Unlike the situation with other virus-host cell interactions, SV40 large-T antigen does not block the activation of PKR, suggesting that SV40 counteracts the cellular antiviral response mediated by PKR at a step downstream of PKR activation. Mutational analysis of large-T antigen indicates that a domain located between amino acids 400 and 600 of large-T antigen is responsible for this function. These results define a novel translational regulatory function for the SV40 large-T antigen.  相似文献   

13.
14.
An in vitro nuclear translocation system is described in which isolated rat liver nuclei were incubated in a defined buffered medium containing radiolabeled or fluorescently labeled exogenous proteins. The nuclei were rapidly recovered, extracted, and analyzed for the presence of associated radiolabeled or fluorescently labeled proteins. The isolated nuclei exhibited the same specificity for protein uptake as seen previously in vivo, accumulating simian virus 40 wild-type large-T antigen and p53 while excluding a cytoplasmic variant of large-T antigen (d10) and bovine serum albumin. The rapid nuclear accumulation of wild-type large-T antigen was shown to be selective and dependent upon the recognition of a wild-type nuclear location signal, ATP and temperature dependent, and unidirectional. Taken together, the data suggest that in our in vitro system the nuclear translocation of wild-type large-T antigen exhibits some of the characteristics of an active transport process.  相似文献   

15.
The chemistry of the proteolytic conversion of the native yeast hexokinases P-I and P-II to the respective modified forms S-I and S-II was studied in detail. The conversion of P-I to S-I was found to involve the removal of one six and one five residue peptide from P-I; these peptides were isolated and sequenced, and a comparison with the partial sequence of native P-I demonstrated that they were cleaved from the amino terminal end. Since results indicated that exactly the same peptides were cleaved from P-II during conversion to S-II, it is concluded that the first 11 amino acids in P-I and P-II have the same sequence. That sequence is: val · his · leu · gly · pro · lys · lys · pro · gln · ala · arg The basicity of these peptides was reflected in the decrease in isolectric point observed when a P-form is converted to an S-form. The peptides are clearly involved in the association of the subunits of yeast hexokinase, since their removal greatly weakens the tendency of the subunits to dimerize.  相似文献   

16.
Site-directed mutagenesis was used to change Lys-128 of the simian virus 40 large-T nuclear location signal to Met, Ile, Arg, Gln, Asn, Leu, or His. Except for the large-T antigen of the Arg mutation, which was present in cytoplasmic and nuclear compartments, the resultant proteins were unable to enter the nucleus. By contrast, mutations at other sites within the signal were generally less severe in their effect. In some cases (Lys-128 to Gln, Asn, and His), the apparently cytoplasmic variants were able to support limited plasmid DNA replication, suggesting that low levels of large-T antigen undetectable by immunofluorescence were present in the nucleus. Such mutants did not support viral DNA replication. We conclude that there is a strong requirement for a basic residue at position 128 in the large-T nuclear location signal, with Lys the preferred residue.  相似文献   

17.
Mouse cells transformed by simian virus 40 (SV40) have been shown to contain a complex of the virus-coded large-T antigen with a host 53,000-molecular-weight (53K) protein. Initial attempts to detect a similar complex in lytically infected cells were unsuccessful, and it therefore seemed that the complex might be peculiar to transformed or abortively transformed nonpermissive cells. Immunoprecipitation of [32P]phosphate-labeled extracts of SV40-infected CV-1 African green monkey kidney cells with antibodies specific for large-T or the 53K protein revealed that the large-T-53K protein complex was formed during lytic infections. Only a minor fraction of the large-T present was associated with 53K protein, and large-T and the 53K host protein cosedimented during centrifugation through sucrose gradients. We used monospecific sera and monoclonal antibodies to study the rate of synthesis and phosphorylation of the 53K protein during lytic infections. Infection of CV-1 cells with SV40 increased the rate of synthesis of the 53K protein fivefold over that in mock-infected cells. At the same time, the rate of phosphorylation of the 53K protein increased more than 30-fold compared with control cultures. Monkey cells transformed by UV-irradiated SV40 (Gluzman et al., J. Virol. 22:256-266, 1977) also contained the large-T-53K protein complex. The formation of the complex is therefore not a peculiarity of SV40-transformed rodent cells but is a common feature of SV40 infections.  相似文献   

18.
19.
Antibodies were raised against six synthetic peptides corresponding to overlapping amino acid sequences (106 through 145) from a putative DNA binding domain in simian virus 40 (SV40) large-T antigens. All six antipeptide sera immunoprecipitated large-T from crude extracts of SV40-transformed cells, but the efficiency varied widely; in general, antibodies to the longer peptides produced the strongest anti-large-T activity. Antisera were purified by immunoaffinity chromatography on immobilized peptide. The purified antisera recognized only some forms of large-T; full-sized large-T from transformed cells, super-T from SV3T3 C120 cells, and 70,000-dalton T-antigen from Taq-BamHI cells were immunoprecipitated, whereas large-T from productively infected cells reacted irreproducibly, and the full-sized protein, synthesized in vitro or eluted from sodium dodecyl sulfate-containing gels, and the 33,000- and 22,000-dalton truncated large-Ts from Swiss SV3T3 and MES2006 cells, respectively, were not immunoprecipitated. This pattern of reactivity was explained when extracts were fractionated by sucrose density centrifugation, and it was found that only rapidly sedimenting forms of large-T were immunoprecipitated by the antipeptide sera; that is, large-T complexed with nonviral T antigen was detected, whereas lighter forms were not detected. Cascade immunoprecipitations did not support the view that this result was caused by the low affinity of the peptide antisera for large-T, and Western blotting experiments confirmed that the peptide antisera react directly with immobilized, monomeric large-T but not with nonviral T antigen. Immunoprecipitation assays to detect large-T:nonviral T antigen complexes bound specifically to fragments of SV40 DNA showed that under conditions of apparent antibody excess, DNA still bound to the complex.  相似文献   

20.
Simian virus 40 large T antigen (large T) in the early and the late phases of infection differs significantly in its sequence-specific DNA-binding and ATPase activities, indicating that different large-T populations participate in virus-specific events at various stages of the infectious cycle. To further characterize these large-T populations, we have analyzed nuclear subclasses of large T, isolated from their in vivo location, for their biochemical activities. We show that chromatin- and nuclear matrix-associated large-T molecules exhibit different simian virus 40 control region (ORI) DNA-binding and ATPase activities. The association of large T with a certain nuclear substructure, therefore, subcompartmentalizes large-T molecules exerting different biochemical activities. Nuclear subcompartmentalization thus may provide a higher-order level for the regulation of biochemical activities of large T in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号