首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes.  相似文献   

2.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   

3.
Mos is a germ cell-specific serine/threonine protein kinase that activates mitogen-activated protein kinase (MAPK) through MAPK kinase (MKK). In Xenopus oocytes, Mos synthesis is required for progesterone-induced activation of MAPK and maturation promoting factor. Injection of Mos or active MAPK causes mitotic arrest in early embryos, suggesting that Mos also acts via MKK and MAPK to induce the arrest of unfertilized eggs in metaphase of meiosis II. We have investigated whether Mos activity is regulated by phosphorylation. Previous studies have identified Ser-3 as the principal autophosphorylation site. We show that Mos interacts with the catalytic domain of MKK in a Saccharomyces cerevisiae two-hybrid test. Acidic substitutions of the sites phosphorylated by Mos in MKK reduce the interaction, implying that the complex may dissociate after phosphorylation of MKK by Mos. Furthermore, the Mos-MKK interaction requires Mos kinase activity, suggesting that Mos autophosphorylation may be involved in the interaction. Substitution of Ser-3 of Mos with Ala reduces the interaction with MKK and also reduces both the activation of MKK by Mos in vitro and cleavage arrest induced by Mos fusion protein in Xenopus embryos. By contrast, substitution of Ser-3 by Glu, an acidic amino acid that mimics phosphoserine, fosters the Mos interaction with MKK and permits activation of MKK in vitro and Mos-induced cleavage arrest. Moreover, the Glu-3 substitution increases the interaction of a kinase-inactive Mos mutant with MKK. Taken together, these results suggest that an important step in Mos activation involves the phosphorylation at Ser-3, which promotes Mos interaction with and activation of MKK.  相似文献   

4.
We reported previously that egg membrane rafts serve as a subcellular microdomain for sperm-dependent tyrosine kinase signaling in Xenopus fertilization. Moreover, we demonstrated that raft-associated Src tyrosine kinase was activated by sperm in vitro. Here we show that egg rafts incubated with sperm or hydrogen peroxide (H2O2) can promote Src-dependent phosphorylation of phospholipase Cgamma (PLCgamma) and transient calcium release in the extracts of unfertilized Xenopus eggs. In vivo egg activation by sperm or H2O2 also promotes tyrosine phosphorylation and raft-translocalization of PLCgamma. Immunodepletion of PLCgamma from the egg extracts inhibits the raft-dependent calcium release. Rafts prepared from H2O2-activated eggs also promote Src-dependent dephosphorylation of p42 mitogen-activated protein kinase and cell cycle transition from metaphase II to interphase in egg extracts. PLCgamma phosphorylation and calcium release in egg extracts can be promoted by rafts prepared from COS-7 cells expressing the Xenopus Src gene. These results demonstrate that the signaling events elicited by fertilization in Xenopus eggs can be reconstituted in vitro. The development of such experimental platforms will allow us to dissect the molecular mechanism of sperm-dependent activation of raft-associated Src and subsequent up-regulation of PLCgamma and egg activation machinery in Xenopus eggs.  相似文献   

5.
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.  相似文献   

6.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

7.
Xenopus oocytes and the biochemistry of cell division   总被引:31,自引:0,他引:31  
J L Maller 《Biochemistry》1990,29(13):3157-3166
The control of cell proliferation involves both regulatory events initiated at the plasma membrane that control reentry into the cell cycle and intracellular biochemical changes that direct the process of cell division itself. Both of these aspects of cell growth control can be studied in Xenopus oocytes undergoing meiotic maturation in response to mitogenic stimulation. All mitogenic signaling pathways so far identified lead to the phosphorylation of ribosomal protein S6 on serine residues, and the biochemistry of this event has been investigated. Insulin and other mitogens activate ribosomal protein S6 kinase II, which has been cloned and sequences in oocytes and other cells. This enzyme is activated by phosphorylation on serine and threonine residues by an insulin-stimulated protein kinase known as MAP-2 kinase. MAP kinase itself is also activated by direct phosphorylation on threonine and tyrosine residues in vivo. These results reconstitute one step of the insulin signaling pathway evident shortly after insulin receptor binding at the membrane. Several hours after mitogenic stimulation, a cell cycle cytoplasmic control element is activated that is sufficient to cause entry into M phase. This control element, known as maturation-promoting factor or MPF, has been purified to near homogeneity and shown to consist of a complex between p34cdc2 protein kinase and cyclin B2. In addition to apparent phosphorylation of cyclin, regulation of MPF activity involves synthesis of the cyclin subunit and its periodic degradation at the metaphase----anaphase transition. The p34cdc2 kinase subunit is regulated by phosphorylation/dephosphorylation on threonine and tyrosine residues, being inactive when phosphorylated and active when dephosphorylated. Analysis of phosphorylation sides in histone H1 for p34cdc2 has revealed a consensus sequence of (K/R)S/TP(X)K/R, where the elements in parentheses are present in some but not all sites. Sites with such a consensus are specifically phosphorylated in mitosis and by MPF in the protooncogene pp60c-src. These results provide a link between cell cycle control and cell growth control and suggest that changes in cell adhesion and the cytoskeleton in mitosis may be regulated indirectly by MPF via protooncogene activation. S6 kinase II is also activated upon expression of MPF in cells, indicating that MPF is upstream of S6 kinase on the mitogenic signaling pathway. Further study both of the signaling events that lead to MPF activation and of the substrates for phosphorylation by MPF should lead to a comprehensive understanding of the biochemistry of cell division.  相似文献   

8.
Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti-MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post-translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl.  相似文献   

9.
Exposure of cells to mitogens or growth factors stimulates Raf-1 activity through a complex mechanism that involves binding to active Ras, phosphorylation on multiple residues, and protein-protein interactions. Recently it was shown that the amino terminus of Raf-1 contains an autoregulatory domain that can inhibit its activity in Xenopus oocytes. In the present work we show that expression of the Raf-1 autoinhibitory domain blocks extracellular signal-regulated kinase 2 activation by the Raf-1 catalytic domain in mammalian cells. We also show that phosphorylation of Raf-1 on serine 338 by PAK1 and tyrosines 340 and 341 by Src relieves autoinhibition and that this occurs through a specific decrease in the binding of the Raf-1 regulatory domain to its catalytic domain. In addition, we demonstrate that phosphorylation of threonine 491 and serine 494, two phosphorylation sites in the catalytic domain that are required for Raf-1 activation, is unlikely to regulate autoinhibition. These results demonstrate that the autoinhibitory domain of Raf-1 is functional in mammalian cells and that its interaction with the Raf-1 catalytic domain is regulated by phosphorylation of serine 338 and tyrosines 340 and 341.  相似文献   

10.
The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation.  相似文献   

11.
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.  相似文献   

12.
MAP kinase is thought to play a pivotal role not only in the growth factor-stimulated signalling pathway but also in the M phase phosphorylation cascade downstream of MPF. MAP kinase is fully active only when both tyrosine and threonine/serine residues are phosphorylated. We have now identified and purified a Xenopus MAP kinase activator from mature oocytes that is able to induce activation and phosphorylation on tyrosine and threonine/serine residues of an inactive form of Xenopus MAP kinase. The Xenopus MAP kinase activator itself is a 45 kDa phosphoprotein and is inactivated by protein phosphatase 2A treatment in vitro. Microinjection of the purified activator into immature oocytes results in immediate activation of MAP kinase. Further experiments using microinjection as well as cell free extracts have shown that Xenopus MAP kinase activator is an intermediate between MPF and MAP kinase. Thus, MAP kinase activator plays a key role in the phosphorylation cascade.  相似文献   

13.
The Reelin-Disabled 1 (Dab1) signaling pathway plays an important role in neuronal cell migration during brain development. Dab1, an intracellular adapter protein which is tyrosine phosphorylated upon Reelin stimulation, has been directly implicated in the transmission and termination of Reelin-mediated signaling. Two main forms of Dab1 have been identified in the developing chick retina, an early isoform (Dab1-E) expressed in progenitor cells and a late isoform (Dab1-L, a.k.a. Dab1) expressed in differentiated cells. Dab1-E is missing two Src family kinase (SFK) phosphorylation sites that are critical for Reelin-Dab1 signaling and is not tyrosine phosphorylated. We have recently demonstrated a role for Dab1-E in the maintenance of retinal progenitor cells. Here, we report that Dab1-E is phosphorylated at serine/threonine residues independent of Reelin. Cdk2, highly expressed in retinal progenitor cells, mediates Dab1-E phosphorylation at serine 475 which in turn promotes ubiquitination-triggered proteasome degradation of Dab1-E. Inhibition of protein phosphatase 1 and/or protein phosphatase 2A leads to increased Dab1-E instability. We propose that Dab1 turnover is regulated by both Reelin-independent serine/threonine phosphorylation and Reelin-dependent tyrosine phosphorylation.  相似文献   

14.
The isolation and in vitro assay of maternal mRNPs has led to differing conclusions as to whether maternal mRNAs in sea urchin eggs are in a repressed or 'masked' form. To circumvent the problems involved with in vitro approaches, we have used an in vivo assay to determine if the availability of mRNA and/or components of the translational machinery are limiting protein synthesis in the unfertilized egg. This assay involves the use of a protein synthesis elongation inhibitor to create a situation in the egg in which there is excess translational machinery available to bind mRNA. Eggs were fertilized and the rate of entry into polysomes of individual mRNAs was measured in inhibitor-treated and control embryos using 32P-labeled cDNA probes. The fraction of ribosomes in polysomes and the polysome size were also determined. The results from this in vivo approach provide strong evidence for the coactivation of both mRNAs and components of the translational machinery following fertilization. The average polysome size increases from 7.5 ribosomes per message in 15 min embryos to approximately 10.8 ribosomes in 2 h embryos. This result gives additional support to the idea that translational machinery, as well as mRNA, is activated following fertilization. We also found that individual mRNAs are recruited into polysomes with different kinetics, and that the fraction of an mRNA in polysomes in the unfertilized egg correlates with the rate at which that mRNA is recruited into polysomes following fertilization.  相似文献   

15.
16.
Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A-like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.  相似文献   

17.
Pertussis toxin ADP-ribosylation and Western blot analysis using G protein-specific antibodies were used to study G protein expression in mouse oocytes, eggs, and early embryos. A pertussis toxin (PT) substrate of about 40 kDa was observed in all stages, but its level was stage dependent. It decreased dramatically between germinal vesicle stage oocytes and unfertilized eggs, remained relatively constant through the early 2-cell stage, and then declined again with each cell division, reaching the lowest level at the 8- to 16-cell stage. Its level, or perhaps that of a different substrate, then increased at the blastocyst stage. Western blot analysis with antisera to the G protein alpha subunit indicated that the decrease between germinal vesicle stage oocytes and unfertilized eggs was less pronounced for the alpha subunit itself than for the PT substrate. Antisera to G protein beta subunit revealed that the difference in the amount of this subunit in germinal vesicle-stage oocytes versus unfertilized eggs was even greater than that of the PT ADP-ribosylation substrate. These results suggest that during oocyte maturation G protein beta gamma levels decline to a greater extent than alpha levels. Additional evidence supporting this hypothesis was obtained by showing that addition of exogenous beta gamma to unfertilized egg preparations increased the amount of PT substrate. These results indicate that G protein subunit expression is differentially regulated during oocyte maturation.  相似文献   

18.
The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and constitutively phosphorylated on serine and weakly on threonine residues. In this study, we have mapped constitutive phosphorylation sites for casein kinases, protein kinase C, and an unidentified kinase on the KIR cytoplasmic domain. Three of these phosphorylation sites are highly conserved in human inhibitory KIR. Functional studies of the wild-type receptor and serine/threonine mutants indicated that phosphorylation of Ser(394) by protein kinase C slightly suppresses KIR3DL1 inhibitory function, and reduces receptor internalization and turnover. Our results provide evidence that serine/threonine phosphorylation is an important regulatory mechanism of KIR function.  相似文献   

19.
20.
Many G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP. A mutant P2Y(2) receptor lacking the PXXP motifs was found to stimulate calcium mobilization and serine/threonine phosphorylation of the Erk1/2 mitogen-activated protein kinases, like the wild-type receptor, but was defective in its ability to stimulate tyrosine phosphorylation of Src and Src-dependent tyrosine phosphorylation of the proline-rich tyrosine kinase 2, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor. Dual immunofluorescence labeling of the P2Y(2) receptor and the EGFR indicated that UTP caused an increase in the co-localization of these receptors in the plasma membrane that was prevented by the Src inhibitor PP2. Together, these data suggest that agonist-induced binding of Src to the SH3 binding sites in the P2Y(2) receptor facilitates Src activation, which recruits the EGFR into a protein complex with the P2Y(2) receptor and allows Src to efficiently phosphorylate the EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号