首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several 3′ splice signals in nuclear precursor mRNAs have already been known for some time: the AG doublet on the left-hand side of the splice and a run of pyrimidines just upstream of it. More recently it has been noted that the YNYTRAY sequence (where Y is a pyrimidine, R a purine and N any base) is a branching-sequence participating in formation of a lariat structure. Keller and Noon have shown the existence of several putative consensus sequences at this site. In this work, extensive computations of the distributions of 256 quartets in all primate nuclear pre-mRNA intron sequences present in GenBank have been carried out. Several putative signals upstream and downstream of the 3′ splice have been detected. These have been compared with the results obtained in analogous computations carried out on all nuclear pre-mRNA introns present in a combined eukaryotic file containing mammal, non-mammalian vertebrate, invertebrate and plant sequences. The distributions of the more interesting oligomers are shown here. Of particular interest are the putative (A)GGG(A) signal 60 nucleotides upstream of the 3′ splice site and (A)CCC(A) 3–40 nucleotides downstream of it. A possible splicing model explaining these data and involving formation of alterantive hairpin loop structures is proposed.  相似文献   

2.
Several 3' splice signals are known todate. At the 3' splice site an AG doublet is frequently found. Just upstream of the splice site there is a string of 6-11 pyrimidines. More recently it has been found that one of the stages in the splicing process involves formation of a lariat, in which the 5' end of the intron forms a 2'-5' branch with an A residue located 18-37 nucleotides upstream of the 3' splice site. The branching-point consensus is weakly defined and consists of the sequence YNYTRAY, where Y is a pyrimidine, R a purine and N any base. The A in the sixth position is the one with which branching occurs. Here we present the results of extensive searches for additional putative signals around the branching-point consensus and the 3' splice site in rodent nuclear precursor mRNAs. The signals obtained for the over 370 rodent introns are compared with those found in a larger eukaryotic sample containing over 900 nuclear pre-mRNA introns. Of particular interest are GGGA and CCCA. In both analyses GGGA occurs about 60 nucleotides upstream and CCCA is found 3-40 nucleotides downstream from the 3' splice site. A model explaining some of the putative signals discussed here is also proposed. This model involves formation of alternate stem-loop structures around the branching point and 3' splice site. Such signals and structures can possibly aid in protein or nucleoprotein branching point and splice site recognition.  相似文献   

3.
It is known that the GT doublet is well conserved at the 5' exon/intron splice junction and is frequently embedded in the AGGT quartet. Although only the underlined G is invariable, splicing and ligation are accurately executed. In this work we search for additional conserved potential signals which may aid in 5' splice site recognition. Extensive searches which are not limited to a preconceived consensus sequence are carried out. We investigate the distributions of the 256 quartets in a 1000 nucleotide span around the 5' splice sites in approximately 1700 eukaryotic nuclear precursor mRNAs. Several potential signals are noted. Of particular interest are quartets containing runs of G, e.g., G4, G3T, G3C, G3A and AG3 in the intron immediately downstream and some C-containing quartets in the exon upstream of the 5' splice site. In an analogous calculation, (A)GGG(A) has also been found to be frequent in the intron, 60 nucleotides upstream and (A)CCC(A) in the exon downstream of the 3' splice site. These results are consistent with the recent indications that exon sequences may play a role in efficient splicing. Some models are proposed.  相似文献   

4.
Abstract

Several 3′ splice signals are known todate. At the 3′ splice site an AG doublet is frequently found. Just upstream of the splice site there is a string of 6–11 pyrimidines. More recently it has been found that one of the stages in the splicing process involves formation of a lariat, in which the 5′ end of the intron forms a 2′-5′ branch with an A residue located 18–37 nucleotides upstream of the 3′ splice site. The branching-point consensus is weakly defined and consists of the sequence YNYTRAY, where Y is a pyrimidine, R a purine and N any base. The A in the sixth position is the one with which branching occurs. Here we present the results of extensive searches for additional putative signals around the branching-point consensus and the 3′ splice site in rodent nuclear precursor mRNAs. The signals obtained for the over 370 rodent introns are compared with those found in a larger eukaryotic sample containing over 900 nuclear pre-mRNA introns. Of particular interest are GGGA and CCCA In both analyses GGGA occurs about 60 nucleotides upstream and CCCA is found 3–40 nucleotides downstream from the 3′ splice site. A model explaining some of the putative signals discussed here is also proposed. This model involves formation of alternate stem-loop structures around the branching point and 3′ splice site. Such signals and structures can possibly aid in protein or nucleoprotein branching point and splice site recognition.  相似文献   

5.
Conserved quartets near 5' intron junctions in primate nuclear pre-mRNA   总被引:2,自引:0,他引:2  
Analysis of a 1000 nucleotide span around 664 primate 5' exon/intron junctions revealed frequent recurrences of G-rich runs downstream of the 5' splice sites. In particular, AGGG, GGGA, GGGG, GGGT and TGGG are frequent at this site. Some C-rich quarters are frequent upstream of the 5' splice site. Similar behaviour of these G- and C-rich quartets is indicated for the 587 rodent introns and for a combined eukaryotic file containing 1688 introns. (A)GGG(A) is also frequent in the introns 60 nucleotides upstream of the 3' splice site, and (A)CCC(A) is frequently found in the exons downstream of the 3' site. The same consistent behaviour of the 3' splice sites is obtained as for the 5' sites, for the primates, rodents and combined eukaryotic file. These results suggest that in addition to the well-conserved 5' and 3' splice sequences, exon as well as intron sequences may play a role in nuclear pre-mRNA splicing.  相似文献   

6.
Region E3 encodes four major overlapping mRNAs with different splicing patterns. There are two poly(A) sites, an upstream site called E3A and a downstream site called E3B. We have analyzed virus mutants with deletions or insertions in E3 in order to identify sequences that function in the alternative processing of E3 pre-mRNAs, and to understand what determines which poly(A) sites and which splice sites are used. In previous studies we established that the 5' boundary of the E3A poly(A) signal is at an ATTAAA sequence. We now show, using viable virus mutants, that the 3' boundary of the E3A signal is located within 47-62 nucleotides (nt) downstream of the ATTAAA (17-32 nt downstream of the last microheterogenous poly(A) addition site). Our data further suggest that the spacing between the ATTAAA, the cleavage sites, and the essential downstream sequences may be important in E3A 3' end formation. Of particular interest, these mutants suggest a novel mechanism for the control of alternative pre-mRNA processing. Mutants which are almost completely defective in E3A 3' end formation display greatly increased use of a 3' splice site located 4 nt upstream of the ATTAAA. The mRNA that uses this 3' splice site is polyadenylated at the E3B poly(A) site. We suggest, for this particular case, that alternative pre-mRNA processing could be determined by a competition between trans-acting factors that function in E3A 3' end formation or in splicing. These factors could compete for overlapping sequences in pre-mRNA.  相似文献   

7.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

8.
Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.  相似文献   

9.
Region E3 of the adenovirus encodes about ten overlapping mRNAs (a to j) with different splicing patterns and with two RNA 3' end sites termed E3A and E3B. We have examined how deletions in 12 viable virus mutants affect differential RNA processing in E3. We assayed E3 mRNAs by the nuclease-gel and RNA blot procedures. Some deletions had no effect whereas others (e.g. deletion of a 3' splice or the E3A 3' end signal) had the anticipated effects on RNA processing. However, deletions in two regions had surprising effects. Deletions in one region (nucleotides 1691 to 2044) enhanced splicing at the upstream 951 5' splice site and the downstream 2157 and/or 2880 3' splice sites. Some of these deletions prevented RNA 3' end formation at the downstream E3A site. Deletion in the other region (nucleotides 2173 to 2237) enhanced an upstream splice site (951 to 2157) such that almost all pre-mRNA was processed into mRNA f. We suggest that these two regions contain cis-acting signals that regulate differential RNA processing. We discuss the results in terms of RNA folding and scanning models for splicing, as well as models for differential RNA 3' end formation at the E3A versus the E3B site.  相似文献   

10.
Rivero F 《Protist》2002,153(2):169-176
Criteria for the identification of termination regions in Dictyostelium discoideum genes have been established and the sequence requirements for termination in 33 genes have been analyzed. A canonical hexamer signal AATAAA was present 15-30 nucleotides upstream of the cleavage site, usually a TA, and was embedded in a particularly A-rich environment. T- or GT-rich downstream elements characteristic of animal cells could not be identified. In a sample of 102 introns we have established the consensus AG/GTAAGT and ATAG/ for the 5' and 3' splice sites, respectively. Most introns are 75-150 nucleotides long and the A+T content is high (90%). A putative branch point was identified in half of the introns 20-60 nucleotides upstream of the 3' splice site and the consensus TACTAAY was derived. A polypyrimidine tract required for branching in vertebrates was not identified, but weak preference for pyrimidine was found 10-45 nucleotides upstream of the 3' splice site.  相似文献   

11.
12.
cis-acting sequences of Rous sarcoma virus (RSV) RNA involved in control of the incomplete splicing that is part of the retroviral life cycle have been studied. The 5' and two alternative 3' splice sites, as well as negative regulator of splicing element in the intron, have been introduced into chimeric constructs, and their responsive roles in splicing inhibition have been evaluated by transient transfection experiments. Although the RSV 5' splice site was used efficiently in these assays, substrates containing either the RSV env or the RSV src 3' splice site were not spliced completely, resulting in 40 to 50% unspliced RNA. Addition of the negative regulator of splicing element to substrates containing RSV 3' splice sites resulted in greater inhibition of splicing (70 to 80% unspliced RNA), suggesting that the two elements function independently and additively. Deletion of sequences more than 70 nucleotides upstream of the src 3' splice site resulted in efficient splicing at this site, suggesting that inefficient usage is not inherent in this splice site but is instead due to to sequences upstream of it. Insertion of these upstream sequences into the intron of a heterologous pre-mRNA resulted in partial inhibition of its splicing. In addition, secondary structure interactions were predicted to occur between the src 3' splice site and the inhibitory sequences upstream of it. Thus, RSV splicing control involves both intronic sequences and 3' splice sites, with different mechanisms involved in the underutilization of the env and src splice acceptor sites.  相似文献   

13.
Single nucleotide changes to the sequence between two alternative 5' splice sites, separated by 25 nucleotides in a beta-globin gene derivative, caused substantial shifts in pre-mRNA splicing preferences, both in vivo and in vitro. An activating sequence for splicing was located. Models for the recognition by U1 small nuclear ribonucleoproteins (snRNPs) of competing 5' splice sites were tested by altering the distance separating the two sites. Use of the upstream splice site declined sharply when it was separated from the downstream (natural) site by distances of 40 nucleotides or more. This effect was reversed in vivo, but not in vitro, by altering the upstream sequence to that of a consensus 5' splice site sequence. Dilution of an extract used for splicing in vitro shifted preferences when the sites were close towards the downstream site. We conclude that the mechanism of selection depends on the distance apart of the potential splice sites and that with close sites steric interference between factors bound to both sites may impede splicing and affect splicing preferences.  相似文献   

14.
15.
We have carried out a systematic analysis of the proteins that interact with specific intron and exon sequences during each stage of mammalian spliceosome assembly. This was achieved by site-specifically labeling individual nucleotides within the 5' and 3' splice sites, the branchpoint sequence (BPS), or the exons with 32P and identifying UV-cross-linked proteins in the E, A, B, or C spliceosomal complex. Significantly, two members of the SR family of splicing factors, which are known to promote E-complex assembly, cross-link within exon sequences to a region approximately 25 nucleotides upstream from the 5' splice site. At the 5' splice site, cross-linking of the U5 small nuclear ribonucleoprotein particle protein, U5(200), was detected in both the B and C complexes. As observed in yeast cells, U5(200), also cross-links to intron/exon sequences at the 3' splice site in the C complex and may play a role in aligning the 5' and 3' exons for ligation. With label at the branch site, we detected three distinct proteins, designated BPS72,BpS70, and BPS56, which replace one another in the E, A, and C complexes. Another dynamic exchange was detected with pre-mRNA labeled at the AG dinucleotide of the 3' splice site. In this case, a protein, AG100,cross-links in the A complex and is replaced by another protein, AG75, in the C complex. The observation that these proteins are specifically associated with critical pre-mRNA sequence elements in functional complexes at different stages of spliceosome assembly implicates roles for these factors in key recognition events during the splicing pathway.  相似文献   

16.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

17.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

18.
19.
20.
The human albumin gene spans 16,961 nucleotides from the putative "Cap" site to the first poly(A) addition site. It is split into 15 exons by 14 intervening sequences which are symmetrically placed within the three domains of albumin. The 5' region is highly conserved up to position -250 and contains the putative TATA (-32) and CAT (-88) boxes. A consensus 5' splice sequence reads /GTAGAGT while the 3' splice sequence is pyrimidine rich and contains CTAG/ at the splice junction. The gene contains three polyadenylation signals, and this 3' region presumably arose by triplication of a shorter fragment prior to mammalian radiation. The albumin gene exhibits a high degree of DNA polymorphism and appears to have been recently invaded by Alu repetitive sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号