首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of increased competitive ability (EICA) hypothesis proposes that invasive species evolve decreased defense and increased competitive ability following natural enemy release. Previous studies have found evidence both for and against EICA. The resource-enemy release hypothesis (R-ERH) suggests that fast-growing species may experience stronger enemy release than slow-growing species. On the basis of R-ERH, the prediction of EICA will be held true for slow-growing genotypes, i.e., the slow-growing genotypes from the introduced range will be less resistant to herbivory and grow faster than those from the home range; while the EICA will not be held for fast-growing genotypes, i.e., there will be no significant differences in growth and defense traits between the introduced and native fast-growing genotypes. We tested these predictions preliminarily using five populations of the invasive plant Alternanthera philoxeroides. This species has two varieties in its home range, which showed a distinct growth-defense strategy: the northern A. p. var. acutifolia (Apa) had higher growth rate but lower resistance, while the southern A. p. var. obtusifolia (Apo) had lower growth rate but higher resistance level. Our results suggest that the EICA hypothesis is consistent with the slow-growing Apo, but not with the fast-growing Apa. We suggest that evolutionary changes in growth or resistance following enemy release are influenced by variation in growth rate within an invasive alien plant. These findings have important implications for the EICA hypothesis, and may partially explain why previous studies have found evidence both for and against EICA.  相似文献   

2.
Over a period of less than 5 years, Belgium was thoroughly invaded by the multicolored Asian coccinellid, Harmonia axyridis. At the same time, a decline of some native coccinellid species was observed in tree habitats. One hypothesis about the cause of this decline was that it might have been due to intraguild predation (IGP) by H. axyridis. In natural conditions, IGP between coccinellids can be tracked by using defensive compounds. Exogenous alkaloids in H. axyridis were therefore examined by gas chromatography-mass spectrometry (GC–MS), using individuals sampled from lime trees that were also occupied by other species of coccinellids. Harmonia axyridis was the dominant species at all life stages, in terms of both numbers of sites occupied and local abundance. The GC–MS analysis of H. axyridis larvae revealed traces of exogenous alkaloids from 19 of the 20 sites and, in nine of those 19 sites, more than 30% of the larvae analyzed contained exogenous alkaloids. Three alkaloids were detected: adaline from Adalia spp., calvine from Calvia spp. and propyleine from Propylea quatuordecimpunctata. Predation by H. axyridis on two different coccinellid species was also detected in the same larva, reinforcing the status of H. axyridis as a top predator. A generalized linear model indicated that IGP frequency was positively influenced by two variables: the abundance of extraguild and intraguild prey; and the interaction between these two variables. Our results therefore support the hypothesis that IGP by H. axyridis on native coccinellids in tree habitats has led to the decline of several of these species.  相似文献   

3.
Declines in native aphidophages in North America have been linked to intraguild predation (IGP) by the invasive coccinellid Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). It is feared that many British species will face a similar fate following the recent establishment of H. axyridis in the UK. Meanwhile, H. axyridis exists in apparent ecological equilibrium with other members of its guild in Japan. The impact of H. axyridis on British coccinellids is uncertain but intraguild predatory interactions do occur, particularly amongst immature stages. This study investigates IGP between immature stages of H. axyridis and various British and Japanese coccinellids. The only asymmetric IG predator of H. axyridis at first instar was Anatis ocellata (Linnaeus). Harmonia axyridis engaged in symmetric IGP with Coccinella septempunctata Linnaeus, Calvia quatuordecimguttata (Linnaeus), Harmonia quadripunctata (Pontoppidan) and Eocaria muiri Timberlake, but was the asymmetric IG predator of all other species studied. The level of IGP was high between fourth instar larvae, and frequently biased towards H. axyridis, except in the case of A. ocellata, which again was the only IG predator of H. axyridis. In interactions between fourth instar larvae and pre-pupae, IGP was unidirectional towards H. axyridis for all species except A. ocellata, which acted as both IG predator and IG prey. Pupae were better protected against IGP than pre-pupae but most species were still susceptible to attack by H. axyridis, although IGP was symmetric with A. ocellata, and H. quadripunctata pupae were never attacked. The differences in susceptibility of the various species and developmental stages to IGP by H. axyridis are discussed in relation to physical defence structures. We find no evidence that Japanese species have superior defences to British ones and suggest that behavioural strategies may enable co-existence in the native range. We discuss the relevance of IGP by H. axyridis to the species it is likely to encounter in Britain.  相似文献   

4.
Biological invasions are ecologically and economically costly. Understanding the major mechanisms that contribute to an alien species becoming invasive is seen as essential for limiting the effects of invasive alien species. However, there are a number of fundamental questions that need addressing such as why some communities are more vulnerable to invasion than others and, indeed, why some alien species become widespread and abundant. The enemy release hypothesis (ERH) is widely evoked to explain the establishment and proliferation of an alien species. ERH predicts that an alien species introduced to a new region should experience a decrease in regulation by natural enemies which will lead to an increase in the distribution and abundance of the alien species. At the centre of this theory is the assumption that natural enemies are important regulators of populations. Additionally, the theory implies that such natural enemies have a stronger regulatory effect on native species than they do on alien species in the introduced range, and this disparity in enemy regulation results in increased population growth of the alien species. However, empirical evidence for the role of the ERH in invasion success is lacking, particularly for invertebrates. Many studies equate a reduction in the number of natural enemies associated with an alien species to release without studying population effects. Further insight is required in relation to the effects of specific natural enemies on alien and native species (particularly their ability to regulate populations). We review the role of ecological models in exploring ERH. We suggest that recent developments in molecular technologies offer considerable promise for investigating ERH in a community context.  相似文献   

5.
Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats.  相似文献   

6.
Field parasitism of two lady beetles, a recently introduced species, Harmonia axyridis Pallas, and an indigenous species, Coleomegilla maculata lengi Timberlake, by Dinocampus coccinellae Schrank (Hymenoptera: Braconidae) was investigated in southwestern Québec. Adult coccinellids were sampled from June to September 2001 in alfalfa and corn fields. Parasitism rates were recorded by dissection and rearing of coccinellids in controlled condition. The average proportions of coccinellids with a parasitoid larva were 4.6%for H. axyridis and 32%for C. maculata but 0%of the H. axyridis and 5.9%of theC. maculatawere successfully parasitized. In July, more C. maculata than H. axyridiswere found to be parasitized and among all individuals dissected, C. maculata were more frequently found superparasitized than H. axyridis. Our results suggest that D. coccinellae is not well adapted to H. axyridis in Quebec. This is the first mention of H. axyridis being attacked by D. coccinellae in Canada.  相似文献   

7.
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is an invasive species present in numerous agroecosystems in North America. Despite adverse impacts as a threat to native biodiversity, a nuisance household invader and a pest in fruit production, H. axyridis also plays a beneficial role as a major component of assemblages of generalist predators in several agricultural crops. Here, we review the role of H. axyridis as a natural enemy of Aphis glycines Matsumura (Hemiptera: Aphididae), an invasive pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), in North America. Harmonia axyridis is often the most abundant predator species attacking A. glycines in soybean agroecosystems. This predator has the potential to both prevent and suppress A. glycines outbreaks. Further studies are needed to fully understand and utilize the potential of H. axyridis as a natural enemy in the management of A. glycines and other agricultural pests in agroecosystems worldwide.  相似文献   

8.
Invasive alien species, such as the multicoloured Asian ladybird Harmonia axyridis, are often regarded as major drivers of biodiversity loss. Therefore understanding which characteristics or mechanisms contribute to their invasive success is important. Here the role of symbiotic microsporidia in the hemolymph of H. axyridis was investigated in the context of intraguild predation between wild‐caught H. axyridis and the native ladybird species Coccinella septempunctata. The microsporidia were recently discussed to contribute to the unpalatability of Harmonia for other coccinellids during intraguild predation and to function as “biological weapons”. In the present study, visual detection of microsporidia in hemolymph samples revealed that 73.5 % of H. axyridis were infected. Intraguild predation experiments between larvae of the two species showed a significant competitive advantage for H. axyridis, even against larger larvae of C. septempunctata. Adult C. septempunctata always killed and fed on H. axyridis larvae. However only 11.4 % (4 of 47) of C. septempunctata that fed on infected H. axyridis died within 4 months. In contrast to previous studies this suggests that microsporidia or harmonine, the chemical defense compound of H. axyridis, do not lead to death of C. septempunctata preying on larvae of H. axyridis. Instead our results support the idea that competitive advantage during intraguild predation greatly facilitates the success of H. axyridis and that this may help this highly invasive species to outcompete native species. The impact of microsporidia on Harmonia itself as well as on interspecific interactions require further studies.  相似文献   

9.
Invasive species are characterized by the rapid growth and spread of their populations after establishing a foothold in new habitats, and there are now many examples of such species negatively affecting biodiversity and the economy. It is unclear why some species can become successful invaders, whereas most (even if closely related) remain noninvasive. We previously proposed a hypothesis that parasites associated with invading species can promote their invasive success if they are harmless toward the invaders but harmful to their competitors and/or predators in the newly colonized habitat. Here we discuss whether microsporidia that have recently been discovered in the invasive ladybird Harmonia axyridis contribute to its invasive success. We show that all H. axyridis beetles sourced from diverse collection sites all over the world carry abundant microsporidia. This suggests that both native and invasive H. axyridis populations are associated with these tolerated parasites, which were likely to have existed in native populations before expansion rather than being acquired in newly colonized areas. We describe the pathogenesis of the microsporidia during different developmental stages of H. axyridis and we address the possibility that the predation of its infected eggs and larvae by competing native ladybird species may lead to their infection and ultimately to their decline. Finally, we discuss our initial hypothesis: microsporidia that are tolerated by an invasive vector insect can be active against susceptible native competitors and/or predator species.  相似文献   

10.
The evolution of increased competitive ability hypothesis (EICA) predicts that when alien plants are free from their natural enemies they evolve lower allocation to defense in order to achieve a higher growth rate. If this hypothesis is true, the converse implication would be that the defense against herbivory could be restored if a natural enemy also becomes present in the introduced range. We tested this scenario in the case of Ambrosia artemisiifolia (common ragweed) – a species that invaded Japan from North America. We collected seeds from five North American populations, three populations in enemy free areas of Japan and four populations in Japan where the specialist herbivore Ophraella communa naturalized recently. Using plants grown in a common garden in Japan, we compared performance of O. communa with a bioassay experiment. Consistent with the EICA hypothesis, invasive Japanese populations of A. artemisiifolia exhibited a weakened defense against the specialist herbivores and higher growth rate than native populations. Conversely, in locations where the herbivore O. communa appeared during the past decade, populations of A. artemisiifolia exhibited stronger defensive capabilities. These results strengthen the case for EICA and suggest that defense levels of alien populations can be recuperated rapidly after the native specialist becomes present in the introduced range. Our study implies that the plant defense is evolutionary labile depending on plant-herbivore interactions.  相似文献   

11.
1. Global warming and biological invasions are important threats to biodiversity. Nonetheless, there is little information on how these factors influence performance or life‐history traits of invasive and native species. 2. The effects of temperature on physiological and fitness traits of two invasive alien species (Harmonia axyridis and Hippodamia variegata) and one native species (Eriopis chilensis) of coccinellid were evaluated, testing a model of eurythermality. Eggs of all species were exposed to four temperature treatments (20, 24, 30 and 33 °C). In adult F2 we measured fecundity, locomotor performance, development time (total and per life stage), survival, and preferred body temperature in a thermal gradient. 3. It was found that H. axyridis had comparatively better performance at low temperatures (i.e. 20 °C), while the performance of H. variegata and E. chilensis did not change with temperature or was better at higher temperatures (30 °C). The standardised Levins index showed that all species are eurythermic. E. chilensis had a high niche overlap with the invasive alien ladybird species, rejecting the hypothesis of greater eurythermality of invasive species than native species. 4. Although there were differences in the temperature preferences and in the response of some physiological and life‐history traits of ladybirds to temperature, both the native and invasive alien species are eurythermic, contrary to the prediction. The better performance of H. axyridis at lower temperatures may result in displacement of its current distribution, and thus not all invasive species will respond favourably to global warming.  相似文献   

12.
The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) has rapidly spread in several continents over the past 30 years and is considered an invasive alien species. The success of H. axyridis as an invader is often attributed to weak control by natural enemies. In this paper, we provide an overview of current knowledge on predators and parasitoids of H. axyridis. The common feature of predators and parasitoids is that they directly kill exploited organisms. Currently available data show that H. axyridis, displaying a variety of chemical, mechanical, and microbiological anti-predator defenses, is usually avoided by predators. However, some birds and invertebrates can eat this ladybird without harmful consequences. The primary defenses of H. axyridis against parasitoids include immune response and physiological and nutritional unsuitability for parasitoid development. These defenses are probably relatively efficient against most ladybird parasitoids, but not against flies of the genus Phalacrotophora. The latter are idiobiont parasitoids and hence can evade the host’s immune response. Indeed, rates of parasitism of H. axyridis by Phalacrotophora in the Palaearctic region (both in the native range in Asia and in Europe) are relatively high. While strong evidence for enemy release on the invasive populations of H. axyridis is lacking, several cases of parasitoid acquisition have been recorded in Europe, North America, and South America. We conclude that enemy release cannot be excluded as a possible mechanism contributing to the spread and increase of H. axyridis in the early stages of invasion, but adaptation of parasitoids may lead to novel associations which might offset previous effects of enemy release. However, further work is required to elucidate the population-level effects of such interactions.  相似文献   

13.
Intraspecific and interspecific predation of eggs is a well documented phenomenon amongst aphidophagous coccinellids. The invasive species Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is known to be a top intraguild predator and reported to attack the eggs of many coccinellid species both in a laboratory setting and in the wild. A previous laboratory study highlighted that while many species’ eggs were highly palatable to H. axyridis, the eggs of Calvia quatuordecimguttata (Linnaeus) (Coleoptera: Coccinellidae) appeared to be extremely well protected from attack. Here we present the results of behavioural experiments testing the hypothesis that substances on the egg surface are responsible for this protection, and report preliminary results of GC-MS analysis of these compounds. When the coatings of C. quatuordecimguttata eggs were removed using hexane, they became significantly more susceptible to predation by neonate H. axyridis larvae. However, their overall palatability was not affected, in that complete consumption was never or rarely observed. This suggests that the surface compounds are a true indicator of unpalatability in this species. The effect of hexane-washing on already palatable conspecific eggs was also analysed but had no significant effect on the susceptibility of eggs to cannibalism. We conclude that the eggs of at least one European species are effectively protected by surface deterrents from intraguild predation by H. axyridis. This effect might be due to both the diversity and abundance of hydrocarbons present within the egg coating, the presence of alkenes and/or the presence of patches of a red substance on the eggs’ surface, which is thought to belong to the acid group. In conjunction with data on the susceptibility of other immature stages of C. quatuordecimguttata, this finding may indicate a decreased risk of the species falling victim to invasive H. axyridis, despite their coincident habitat ranges.  相似文献   

14.
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co‐occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.  相似文献   

15.
Native to Asia, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is considered an invasive alien ladybird in Europe and North America, where it was widely introduced as a biological control agent of aphids and coccids. In Europe, H. axyridis was sold by various biological control companies from 1995 in France, Belgium and the Netherlands, and was also intentionally released in at least nine other countries. It has spread very rapidly, particularly since 2002, and is now regarded as established in thirteen European countries. The established range extends from Denmark in the north to southern France in the south, and from Czech Republic in the east to Great Britain in the west. In this paper we map the spread and distribution of H. axyridis in Europe, and examine the situation on a country-by-country basis. We report first records of the species in five countries; Spain, Sweden, Denmark, Czech Republic and Italy; and first evidence of H. axyridis establishment in the latter three countries. Despite releases of H. axyridis in Portugal, Spain and Greece, there is little evidence of establishment in southern Europe. It is predicted that the spread and increase within Europe will continue and that H. axyridis will become one of the most widely distributed coccinellids in the continent.  相似文献   

16.
Major impacts of biological invasions are widely recognized and underscore the need to understand the relation between life-history traits of invasive species and the invasion process. Growth of juveniles and adult survival of invasive species are key factors in invasion process. Life-history traits that increase juvenile fitness including increased rates of development and behavioral characteristics that facilitate competitive success such as increased predator efficiency and foraging ability may explain invasiveness of a species. Invasion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in North America provides an opportunity to investigate life-history traits of juveniles of an invasive species. Here, we evaluate both developmental and behavioral traits that may explain the success of H. axyridis by comparing it to an ecologically similar indigenous species Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae). Three points may contribute to the invasiveness of H. axyridis. First, development of H. axyridis was faster during the 2nd larval instar than C. maculata, a characteristic that may reduce vulnerability at young instars. Second, H. axyridis reached the 4th instar more rapidly than C. maculata. The 4th instar of H. axyridis was also characterized by higher predation efficiency with increased voracity, lethal contact and search efficiency of pea aphids Acyrthosiphon pisum. Finally, surprisingly, a 5th larval instar occured in 33% of the individuals of H. axyridis and was characterized by the same developmental time, but with increased voracity and weight gain compared to 4th larval instars, suggesting an increased fitness of these individuals. These developmental characteristics coupled with increased predation efficiency and behavioral characteristics enhanced the juvenile growth and predatory abilities of this species and may contribute to the invasive ability of H. axyridis.  相似文献   

17.
Although the value of noncrop vegetation for biological control has been extensively studied in agricultural landscapes, there are few reports on how it functions mechanistically. When focusing on the pest control function provided by noncrop vegetation, tritrophic interactions among a predatory natural enemy, its prey, and the prey’s host plant need to be examined. In Japan, the multicolored Asian ladybird beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), an aphidophage, serves as a natural pest control agent in agricultural production, although the species’ introduction into Europe and North America for pest control has had a negative impact on native ecosystems. In the present study, 33 aphid–plant pairs from an agricultural landscape in the eastern Kanto region of Japan were examined experimentally for initial larval survivorship and development of H. axyridis. Significant differences were found among plant–aphid pairs with regard to these parameters. In addition, the larval survivorship of H. axyridis was not consistently determined by host plant or aphid species alone but was context-dependently influenced by the aphid–plant combination. Some alien host plants showed positive effects on the ladybird beetle. Others, however, served as hosts for unsuitable prey species, such as the competitive alien plants Solidago canadensis L. and Robinia pseudoacacia L., which are the host plants of Uroleucon nigrotuberculatum (Olive) and Aphis craccivora Koch, respectively. These findings suggest that various noncrop plants could be managed to promote ladybird beetle populations in rural landscapes.  相似文献   

18.
Biological invasions represent a serious menace to local species assemblages, mainly due to interspecific relationships such as competition and predation. One important invasive species worldwide is Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), which has invaded many regions of the world, threatening the native and endemic coccinellid assemblages due to negative interspecific interactions. These interactions have been widely studied at a local scale, but have been less studied at regional scales. Our aim was to estimate and analyse the potential spatial interaction associated with the co‐occurrence of H. axyridis with native and endemic species in Chile, considering bioclimatic and land cover variables. First, we created species distribution models (SDM) for H. axyridis, native and endemic coccinellids and six representative coccinellid species using maximum entropy technique. Then, we overlapped each SDM with land cover types to estimate the bioclimatic suitability within each land cover type. Finally, we identified the co‐occurrences of organisms according to the SDM and the land cover types, estimating in what land covers H. axyridis and the other coccinellids are more likely to co‐occur. Our results show that the suitable area for H. axyridis occurs from 30° to 42°S in Chile, while for native and endemic species this area is greater. The six selected species are mainly concentrated in central Chile, but differ in their potential suitable areas; Adalia angulifera Mulsant and Scymnus bicolor (Germain) have the largest range, and Mimoscymnus macula (Germain) has the most restricted one. The highest level of potential spatial interactions with H. axyridis occurs in central Chile, specifically in croplands and scrublands, and the lowest in primary native forest for all the species. Our results provide a spatially explicit baseline for coccinellid conservation and management of this invasive species.  相似文献   

19.
Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation.  相似文献   

20.
The aphid predator Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is an invasive alien species in Europe and North America with negative effects on non-target species (including a decline of native ladybird populations), as well as fruit production, and human health. It is, therefore, important to find out which natural enemies could be used to reduce their numbers. Knowledge of H. axyridis’ natural enemies is summarised and data collected from the Netherlands over the past ten years are presented. Beetles were sampled from winter aggregations and from spring through to autumn with illuminated screens at night. Natural enemies were not found in samples of H. axyridis from 2003–2007. From 2008 onward H. axyridis adults were infested by: Hesperomyces virescens Thaxt. fungi (summer and winter), Parasitylenchus bifurcatus Poinar and Steenberg nematodes (winter), Coccipolipus hippodamiae (McDaniel and Morrill) mites (winter), and Dinocampus coccinellae (Schrank) parasitoids (summer and winter). Our results indicate that these natural enemies are starting to use H. axyridis as a host, but are as yet not sufficiently abundant to control the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号