首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Density-dependent dispersal in host-parasitoid assemblages   总被引:2,自引:0,他引:2  
Most spatial population models assume constant rates of dispersal. However, in a given community, dispersal may not only depend on the density of conspecifics, i.e. density‐dependent dispersal, but also on the density of other species, a phenomenon we term ‘community‐dependent dispersal’. We co‐vary the densities of both the beetle host Callosobruchus chinensis and its parasitoid wasp, Anisopteromalus calandrae, in a laboratory study and record the proportions of each species that disperse within a two‐hour period. The parasitoid in these systems exhibits community‐dependent dispersal – dispersing more frequently when parasitoid density is high and larval host density is low. This supported our prediction that individuals should disperse according to competition for available resources. However, in this study the host's dispersal was independent of density. We suggest that this may be due to less intense selection acting on host dispersal strategies than on the parasitoid. We consider some possible consequences of community‐dependent dispersal for a number of spatial population processes. A well‐known host‐parasitoid metapopulation model is expanded so that it includes a greater range of dispersal functions. When the model is parameterised with the parasitoid community‐dependent dispersal function observed in the empirical study, similar population dynamics are obtained as when fixed‐rate dispersal functions are applied. The importance of dispersal functions for invasions of both competitive and host‐parasitoid systems is also considered. The model results demonstrate that understanding how individuals disperse in response to different species’ population densities is important in determining the rate of spread of an invasion. We suggest that more empirical studies are needed to establish what determines dispersal rate and distance in a range of species, combined with theoretical studies investigating the role of the dispersal function in determining spatial population processes.  相似文献   

2.
We consider a two-species competition model in a one-dimensional advective environment, where individuals are exposed to unidirectional flow. The two species follow the same population dynamics but have different random dispersal rates and are subject to a net loss of individuals from the habitat at the downstream end. In the case of non-advective environments, it is well known that lower diffusion rates are favored by selection in spatially varying but temporally constant environments, with or without net loss at the boundary. We consider several different biological scenarios that give rise to different boundary conditions, in particular hostile and “free-flow” conditions. We establish the existence of a critical advection speed for the persistence of a single species. We derive a formula for the invasion exponent and perform a linear stability analysis of the semi-trivial steady state under free-flow boundary conditions for constant and linear growth rate. For homogeneous advective environments with free-flow boundary conditions, we show that populations with higher dispersal rate will always displace populations with slower dispersal rate. In contrast, our analysis of a spatially implicit model suggest that for hostile boundary conditions, there is a unique dispersal rate that is evolutionarily stable. Nevertheless, both scenarios show that unidirectional flow can put slow dispersers at a disadvantage and higher dispersal rate can evolve.  相似文献   

3.
Understanding the impact of past climatic events on the demographic history of extant species is critical for predicting species' responses to future climate change. Palaeoclimatic instability is a major mechanism of lineage diversification in taxa with low dispersal and small geographical ranges in tropical ecosystems. However, the impact of these climatic events remains questionable for the diversification of species with high levels of gene flow and large geographical distributions. In this study, we investigate the impact of Pleistocene climate change on three Neotropical orchid bee species (Eulaema bombiformis, E. meriana and E. cingulata) with transcontinental distributions and different physiological tolerances. We first generated ecological niche models to identify species‐specific climatically stable areas during Pleistocene climatic oscillations. Using a combination of mitochondrial and nuclear markers, we inferred calibrated phylogenies and estimated historical demographic parameters to reconstruct the phylogeographical history of each species. Our results indicate species with narrower physiological tolerance experienced less suitable habitat during glaciations and currently exhibit strong population structure in the mitochondrial genome. However, nuclear markers with low and high mutation rates show lack of association with geography. These results combined with lower migration rate estimates from the mitochondrial than the nuclear genome suggest male‐biased dispersal. We conclude that despite large effective population sizes and capacity for long‐distance dispersal, climatic instability is an important mechanism of maternal lineage diversification in orchid bees. Thus, these Neotropical pollinators are susceptible to disruption of genetic connectivity in the event of large‐scale climatic changes.  相似文献   

4.
The process of dispersal is central to population biology and evolutionary ecology. Because of negative impacts on host fitness, parasite infection generates potential costs of dispersal. However, theoretical predictions that address this issue are lacking. Here, we develop a mathematical model to demonstrate how the dispersal rate of hosts evolves under the influence of parasites in ecological scenarios incorporating pre-, during-, and post-dispersal infection/recovery events. We show that (1) the dispersal tendency is strongly biased towards either infected individuals or susceptible individuals, (2) the bias is inherently determined by the parasite-mediated relative cost of dispersal, and (3) the dispersal costs are determined by the autocorrelation of disease states (susceptible and infected) between pre- and post-dispersal. Our results suggest that parasite virulence in concert with the timing of infection drive the evolution of disease state-biased dispersal. To understand the evolutionary processes in spatial host–parasite systems, the parasite-induced costs of dispersal need to be taken into account.  相似文献   

5.
The presence of multiple foci in population patterns may be due to various processes arising in the population dynamics. Group dispersal, which has been lightly investigated for airborne species, is one of these processes.We built a stochastic model generating the dispersal of groups of particles. This model may be viewed as an extension of classical dispersal models based on parametric kernels. It has a hierarchical structure: at the first stage group centers are drawn under a classical dispersal kernel; at the second stage the particles are diffused around their group centers. Analytic and simulation results show that group dispersal is a sufficient condition to generate patterns with multiple foci, i.e. patchy patterns, even if the population can remain particularly concentrated.  相似文献   

6.
An epidemic model in a patchy environment   总被引:6,自引:0,他引:6  
An epidemic model is proposed to describe the dynamics of disease spread among patches due to population dispersal. We establish a threshold above which the disease is uniformly persistent and below which disease-free equilibrium is locally attractive, and globally attractive when both susceptible and infective individuals in each patch have the same dispersal rate. Two examples are given to illustrate that the population dispersal plays an important role for the disease spread. The first one shows that the population dispersal can intensify the disease spread if the reproduction number for one patch is large, and can reduce the disease spread if the reproduction numbers for all patches are suitable and the population dispersal rate is strong. The second example indicates that a population dispersal results in the spread of the disease in all patches, even though the disease can not spread in each isolated patch.  相似文献   

7.
Species in a highly fragmented environment, such as the intensively used agricultural landscapes of Europe, are expected to be in danger of extinction. We hypothesize according to Kisdi’s theory (Am Nat 159:579–596, 2002) that species in fragmented landscapes with isolated habitats in general tend to possess low dispersal. In order to verify this hypothesis we studied the movement patterns of Stethophyma grossum, a hygrophilous species of wetlands, by mark–release–recapture techniques in a landscape with scattered suitable habitats over 3 years. The study focused on the major population in this landscape (site #1) as dispersal behaviour was assumed to be greatest. Actually, marked individuals of S. grossum were never found in any further suitable habitats in close vicinity to site #1. Despite that the peatland meadow of study site #1 was all over covered with homogenous vegetation only 6% (1.8 ha) of the whole area (30 ha) were occupied by S. grossum. The mean recapture rate over 3 years amounted to 39% with no significant differences between males and females. Both covered little distances within their mean range size of 1.8 ha; the median distances were 36.91 m for males and 26.65 m for females. We confirm the hypothesis that sub-populations of species in longstanding naturally isolated habitats, which habitat conditions have been stable; evolved low dispersal with little movements which are routine movements to find mating partners or food.  相似文献   

8.
The synchronization of the dynamics of spatially subdivided populations is of both fundamental and applied interest in population biology. Based on theoretical studies, dispersal movements have been inferred to be one of the most general causes of population synchrony, yet no empirical study has mapped distance-dependent estimates of movement rates on the actual pattern of synchrony in species that are known to exhibit population synchrony. Northern vole and lemming species are particularly well-known for their spatially synchronized population dynamics. Here, we use results from an experimental study to demonstrate that tundra vole dispersal movements did not act to synchronize population dynamics in fragmented habitats. In contrast to the constant dispersal rate assumed in earlier theoretical studies, the tundra vole, and many other species, exhibit negative density-dependent dispersal. Simulations of a simple mathematical model, parametrized on the basis of our experimental data, verify the empirical results, namely that the observed negative density-dependent dispersal did not have a significant synchronizing effect.  相似文献   

9.
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.  相似文献   

10.
11.
Munguia P  Mackie C  Levitan DR 《Oecologia》2007,153(3):533-541
In metapopulations, the maintenance of local populations can depend on source–sink dynamics, where populations with positive growth rate seed populations with negative growth rate. The pattern and probability of successful dispersal among habitats can therefore be crucial in determining whether local populations will become rare or increase in abundance. We present here data on the dispersal strategy and population dynamics of three marine amphipods living in pen shells (Atrina rigida) in the Gulf of Mexico. The three amphipod species in this study disperse at different life stages. Neomegamphopus hiatus and Melita nitida disperse as adults, while Bemlos unicornis disperses as juveniles. The two species that disperse as adults have the highest initial population sizes when a new shell becomes available, likely caused by the arriving females releasing their brood into these recently occupied shells. This dispersal pattern results in initially higher population growth, but fewer occupied shells, as noted by their clumped distribution. In contrast, the species that disperses as juveniles accumulates more slowly and more evenly across habitats, eventually dominating the other two in terms of numerical abundance. The metapopulation dynamics of the three species seems to be highly dependent on the life history stage involved in dispersal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Interspecific interactions and the evolution of dispersal are both of interest when considering the potential impact of habitat fragmentation on community ecology, but the interaction between these processes is not well studied. We address this by considering the coevolution of dispersal strategies in a host–parasitoid system. An individual-based host–parasitoid metapopulation model was constructed for a patchy environment, allowing for evolution in dispersal rates of both species. Highly rarefied environments with few suitable patches selected against dispersal in both species, as did relatively static environments. Provided that parasitoids persist, all the variables studied led to stable equilibria in dispersal rates for both species. There was a tendency toward higher dispersal rates in parasitoids because of the asymmetric relationships of the two species to the patches: vacant patches are most valuable for hosts, but unsuitable for parasitoids, which require an established host population to reproduce. High host dispersal rate was favoured by high host population growth rate, and in the parasitoid by high growth rates in both species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Diversification and speciation processes are influenced by intrinsic (ecological specialization, dispersal) and extrinsic (habitat structure and instability) factors, but the effect of ecological characteristics on dispersal is difficult to assess. This study uses mitochondrial control region sequences to investigate the population structure and demographic history of the endemic Lake Tanganyika cichlid Neolamprologus caudopunctatus with a preference for the rock-sand interface along two stretches of continuous, rocky shoreline, and across a sandy bay representing a potential dispersal barrier. Populations along uninterrupted habitat were not differentiated; whereas, the sandy bay separated two reciprocally monophyletic clades. The split between the two clades between 170,000 and 260,000 years BP coincides with a period of rising water level following a major lowstand, and indicates that clades remained isolated throughout subsequent lake level fluctuations. Low long-term effective population sizes were inferred from modest genetic diversity estimates, and may be due to recent population expansions starting from small population sizes 45,000–60,000 years BP. Comparisons with available data from specialized rock-dwelling species of the␣same area suggest that habitat structure and lake level fluctuations determine phylogeographic patterns on large scales, while fine-scale population structure and demography are modulated by species-specific ecologies.  相似文献   

14.
AimHabitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch‐specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern.LocationŽelivka and Hrnčíře, Czechia.MethodsWe conducted demographic analyses using population projection matrices with long‐term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate.ResultsWe found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate.Main conclusionsWe recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.  相似文献   

15.
Kindlmann P  Hullé M  Stadler B 《Oecologia》2007,152(4):625-631
Mutualists can affect many life history traits of their partners, but it is unclear how this translates into population dynamics of the latter. Ant–aphid associations are ideal for studying this question, as ants affect aphids, both positively (e.g., protection against natural enemies) and negatively (e.g., reduction of potential growth rates). The unresolved question is whether these effects, which have been observed at the level of individuals and under controlled environmental conditions, have consequences at the population level. On estimating aerial aphid populations by using weekly suction trap data spanning up to 22 years from different locations in France, we show that in ant-attended aphid species long-distance dispersal occurs significantly later, but that the year-to-year changes in the peak number of migrants are not significantly lower than for non-attended aphids. Host alternation had the same retarding effect on dispersal as ant attendance. We discuss the delay in the timing of dispersal in ant-attended aphids, and potential costs that arise in mutualistic systems.  相似文献   

16.
To understand the evolution of dispersal, we study a Lotka–Volterra reaction–diffusion–advection model for two competing species in a heterogeneous environment. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. Two new phenomena are found for one-dimensional habitats and monotone intrinsic growth rates: (i) If both species disperse only by random diffusion, i.e., no advection, it was well known that the slower diffuser always wins. We show that if both species have the same advection rate which is suitably large, the faster dispersal will evolve; (ii) If both species have the same random dispersal rate, it was known that the species with a little advection along the resource gradient always wins, provided that the other species is a pure random disperser and the habitat is convex. We show that if both species have the same random dispersal rate and both also have suitably large advection rates, the species with a little smaller advection rate always wins. Implications of these results for the habitat choices of species will be discussed. Some future directions and open problems will be addressed.  相似文献   

17.
Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that density-dependent dispersal probability can act as a mechanism for coexistence of otherwise non-coexisting competitors. We show that in time-varying habitats, an intermediate dispersal probability will evolve. Analytically, we find that the spreading speed for the integrodifference equation with density-dependent dispersal probability is not linearly determined. Furthermore, the next-generation operator is not compact and, in general, neither order-preserving nor monotonicity-preserving. We give two explicit examples of non-monotone, discontinuous traveling-wave profiles.   相似文献   

18.
Aim A species’ dispersal characteristics will play a key role in determining its likely fate during a period of environmental change. However, these characteristics are not constant within a species – instead, there is often both considerable interpopulation and interindividual variability. Also changes in selection pressures can result in the evolution of dispersal characteristics, with knock‐on consequences for a species’ population dynamics. Our aim here is to make our theoretical understanding of dispersal evolution more conservation‐relevant by moving beyond the rather abstract, phenomenological models that have dominated the literature towards a more mechanism‐based approach. Methods We introduce a continuous‐space, individual‐based model for wind‐dispersed plants where release height is determined by an individual’s ‘genotype’. A mechanistic wind dispersal model is used to simulate seed dispersal. Selection acts on variation in release height that is generated through mutation. Results We confirm that, when habitat is fragmented, both evolutionary rescue and evolutionary suicide remain possible outcomes when a mechanistic dispersal model is used. We also demonstrate the potential for what we term evolutionary entrapment. A population that under some conditions can evolve to be sufficiently dispersive that it expands rapidly across a fragmented landscape can, under different conditions, become trapped by a combination of limited dispersal and a large gap between patches. Conclusions While developing evolutionary models to be used as conservation tools is undoubtedly a challenge, we believe that, with a concerted collaborative effort linking the knowledge and methods of ecologists, evolutionary biologists and geneticists, it is an achievable aim.  相似文献   

19.
Naturalized plant species disperse their populations over considerable distances to become invasive. We tested the hypothesis that this shift from naturalization to invasion is facilitated by increased investment of resources in seed dispersal appendages, using an assemblage of naturalized plants of south-eastern Australia. Compared with non-invasive species, we found in both cross-species and independent-contrasts analyses that invasive species invested more heavily in seed dispersal appendages, regardless of the structure present on the seed associated with the mode of dispersal (e.g., wings versus fleshy fruits). Invasive species such as Lonicera japonica, Hedera Helix and Acetosa sagittata were found to invest as much as 60–70% of total diaspore mass in dispersal appendages. The positive relationship between dispersal investment and invasion success was still prevalent after controlling for the effects of plant growth form, seed mass and capacity for vegetative growth. Our findings demonstrate that a plant’s investment in dispersal appendages helps to overcome the dispersal barrier in the shift from naturalization to invasion.  相似文献   

20.
Sharp and stable clinal variation is enigmatic when found in species with high gene flow. Classical population genetic models treat gene flow as a random homogenizing force countering local adaptation across habitat discontinuities. Under this view, dispersal over large spatial scales will lower the effectiveness of adaptation by natural selection at finer spatial scales. Thus, random gene flow will create a shallow phenotypic cline across an ecotone in response to a steep selection gradient. In sedentary marine species that disperse primarily as larvae, nonrandom dispersal patterns are expected due to coastal hydrodynamics. Surprisingly sharp phenotypic and genotypic clines have been documented in marine species with high gene flow. We are interested in the extent to which nonrandom dispersal could accentuate such clines. We model a linear species range in which populations have stable and uniform densities along a selection gradient; in contrast to random dispersal, convergent advection of larvae can amplify phenotypic differentiation if coupled with a semipermeable dispersal barrier in the convergence zone. The migration load caused by directional dispersal pushes the phenotypic mean away from the local trait optimum in downstream populations, that is, near the convergence zone. A dispersal barrier is possible as a result of colliding currents if the water and larvae are mostly displaced offshore, away from suitable settlement habitat. Disjunctions in a quantitative trait were enlarged in the convergence zone by faster current flows or a more complete dispersal barrier. With advection of larvae per generation one-third as far as the average dispersal distance by diffusion, convergence on a dispersal barrier with 40% permeability generated a trait disjunction across the convergence zone of two phenotypic standard deviations. Without directional dispersal, similar clines also developed across a habitat gap, where population density was low, or across dispersal barriers with less than 1% permeability. These findings suggest that the types of hydrographic phenomena often associated with marine transition zones can strongly affect the balance between gene flow and selection and generate surprisingly steep clines given the large-scale gene flow expected from larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号