首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability and kinetic properties of purified NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) isomorphs were analyzed from plants of two populations of Barnyard grass from contrasting thermal environments. Plants from Québec (QUE) and Mississippi (MISS) were acclimated under controlled conditions at 26/20°C and 14/8°C (day/night). While the enzyme from QUE showed one isomorph, 3 isomorphs were detected in all plants from MISS, suggesting the presence of gene duplication and fixed heterozygosity for the expression of this dimeric enzyme. This findig raises the possibility that the enhanced acclimatory potential of NADP+-MDH from MISS plants, as found from previous studies with the partially purified and unfractioned enzyme, may result from differential kinetic properties of isomorphs which would allow for the proper modulation of catalysis over a wide temperature range. The thermal stability of the QUE isomorph was significantly higher than that of any of the MISS isomorphs. The apparent activation energy of the QUE isomorph was within the range of values found for the 3 MISS isomorphs which were similar to each other. The Michaelis-Menten constants (Km) for oxalacetic acid were not significantly different among isomorphs or between thermoperiods, but Km (NADP+) values for the QUE isomorph were significantly higher than those of two of the MISS isomorphs over the 15–25°C assay range Vmax/Km ratios for OAA and NADP+ were not significantly different among isomorphs or between thermoperiods. Our data indicate that, under highly purified conditions, the single NADP+-MDH isomorph of QUE plants possesses good acclimatory potential for maintaining catalytic efficiency under a wide range of temperature conditions. In vitro thermal and kinetic data do not support the hypothesis that the the multiple NADP+-MDH isomorphs found in MISS plants may have been selected to optimize the thermal and catalytic efficiency of NADP+-MDH under warm temperature conditions.  相似文献   

2.
The aim of the present study was to determine the influence of the ionic strength on the thermal stability of xanthan, i.e. xanthan resistance to chain breaking at high temperatures. Xanthan solutions of various ionic strengths were kept at 80, 90 and 95°C for periods up to 95 h. The thermal stability was determined by measuring the intrinsic viscosity after the heating periods. The experiments showed a critical ionic strength for the thermal stability of xanthan between 10 and 100 mm NaCl or KCl in this temperature range. Below the critical ionic strength the intrinsic viscosity was rapidly reduced, whereas above the critical ionic strength the intrinsic viscosity was virtually unaffected by heating.We then looked for a possible correlation between thermal stability and secondary structure of xanthan. The transition ionic strength (Im) of xanthan solutions, i.e. where xanthan is midway between an ordered and a disordered structure, was determined by NMR at constant temperatures. Im was found to be in the range of 24 mm at 80°C to 60 mm NaCl at 95°C, thus lying in the range of the critical ionic strength of the thermal stability. This suggests a close relationship between thermal stability and secondary structure of xanthan, indicated by the enhanced thermal stability in the ordered state. We believe this enhanced thermostability arises from a double-stranded conformation in the ordered state, as in DNA. The presence of double-stranded xanthan is also indicated by electron micrographs taken at both high and low ionic strengths.The transition temperature (Tm) of xanthan was determined by NMR and optical rotation measurements. At the ionic strength of 7·5 mm the two methods resulted in Tm values of 67 and 52°C respectively. This difference in Tm can possibly be due to the fact that the observed NMR and optical rotation (OR) effects are caused by different molecular phenomena.  相似文献   

3.

Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.

  相似文献   

4.
Pandeya  S.B.  Singh  A.K. 《Plant and Soil》2000,223(1-2):13-21
The stability constants of complexes formed between iron (III) and fulvic acid extracted from organic manures and wastes such as urban domestic sewage sludge, farmyard manure, poultry manure and sulfitation pressmud were investigated by the potentiometric titration method in an ionic medium of 0.1 M KNO3 at 25±1 °C. A modification of the Katchalsky's model was employed for the estimation of stability constants. The displacement of the titration curves due to presence of Fe3+ in FA solutions formed the basis of calculations. The weak acidic property of fulvic acids due to carboxyl groups resulted in buffering over a wide range of pH; fulvic acids were completely neutralized in the pH range of 7.00–8.85. Apparent dissociation constants (pKAPP) of weakly acidic carboxyl groups were a direct function of degree of dissociation (αL) in the mid-range of titration curves but were non-linear at high and low αL values. The stability constants for formation of Fe–FA complexes (log βFe) calculated from the titration data were in the range of 5.64–7.55, depending upon αL and electrostatic properties of fulvic acids. The relatively high stability constants of Fe–FA complexes in comparison to those with other competing cations suggest that the Fe–FA complexes are relatively stable in a soil environment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2–8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2–8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.  相似文献   

6.
We present the results of simulations of a CCl4 monolayer adsorbed on a graphite surface. The CCl4 molecule was represented either by a shapeless superatom or by its atomic sites. The simulations were carried out over a large range of temperatures, from 20 K up to 340 K. We address the following problems: (1) the influence of molecular shape on the structure and stability of phases (particularly at low temperatures), and (2) the influence of the graphite corrugation on layer stability and mechanism of phase transitions. In particular, we discuss the possibility and conditions of the appearance of hexatic phase in the system. Figure Temperature dependence of Φ6 order parameter for CCl4 monolayer adsorbed onsmooth and corrugated surfaces, in the spherical Lennard Jones (LJ) approximation.For comparison, the order parameter calculated for MacDonald’s five-site potential is also presented  相似文献   

7.
The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T90 (p = 0.029), though two ‘outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.  相似文献   

8.
Herein, we disclose the design of a model Ni(II) complex of glycine Schiff base possessing single‐nitrogen stereogenic center, which was successfully used for high‐performance liquid chromatography (HPLC)‐assisted assessment of its configurational stability. The major finding is that the configurational stability of the Ni(II)‐coordinated nitrogen is profoundly dependent on the reaction conditions used, in particular the solvent, and can range from inconsequential (t½ less than 5 min) to virtually completely stable (t½ 90 y). The discovery reported in this study most likely to be of certain theoretical and synthetic value.  相似文献   

9.
Fungal laccases are well investigated enzymes with high potential in diverse applications like bleaching of waste waters and textiles, cellulose delignification, and organic synthesis. However, they are limited to acidic reaction conditions and require eukaryotic expression systems. This raises a demand for novel laccases without these constraints. We have taken advantage of the laccase engineering database LccED derived from genome mining to identify and clone the laccase Ssl1 from Streptomyces sviceus which can circumvent the limitations of fungal laccases. Ssl1 belongs to the family of small laccases that contains only few characterized enzymes. After removal of the twin-arginine signal peptide Ssl1 was readily expressed in E. coli. Ssl1 is a small laccase with 32.5 kDa, consists of only two cupredoxin-like domains, and forms trimers in solution. Ssl1 oxidizes 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and phenolic substrates like 2,6-dimethoxy phenol, guaiacol, and syringaldazine. The kcat value for ABTS oxidation was at least 20 times higher than for other substrates. The optimal pH for oxidation reactions is substrate dependent: for phenolic substrates the highest activities were detected at alkaline conditions (pH 9.0 for 2,6-dimethoxy phenol and guaiacol and pH 8.0 for syringaldazine), while the highest reaction rates with ABTS were observed at pH 4.0. Though originating from a mesophilic organism, Ssl demonstrates remarkable stability at elevated temperatures (T1/2,60°C = 88 min) and in a wide pH range (pH 5.0 to 11.0). Notably, the enzyme retained 80% residual activity after 5 days of incubation at pH 11. Detergents and organic co-solvents do not affect Ssl1 stability. The described robustness makes Ssl1 a potential candidate for industrial applications, preferably in processes that require alkaline reaction conditions.  相似文献   

10.
《Free radical research》2013,47(1):335-348
The light absorption spectral properties of recornbinant human MnSOD. which contains an N-terminal additional methionyl residue, were investigated as a function of pH in the range 4.5–10.5. Whereas the extinction coefficient, ?M at the UV maximum (282 nm) was essentially independent of pH, the ?M values of the visible spectrum maximum (482 nm) displayed a bell-shaped dependence with a plateau between pH 6.5 and B. Those spectral changes were reversible and the enzymatic activity was not affected by exposure to buffered solutions at 25°C in the pH range 5–10.5. The stability of MnSOD was determined between 25 and 60°C at two different pH: 6.5 and 8.2. The enzyme was found to be considerably more stable at pH 6.5 than at pH 8.2, both toward aggregation and degradation. The gel permeation properties of MnSOD were investigated: the enzyme is a tetramer, with a subunit of 22.2 kD; however. it elutes from a Superose 12 column (Pharmacia) with an apparent molecular weight of ~60kD. Under dissociative conditions (such as guanidine-HCI). molecular weights corresponding to the dimer and monomer could also be demonstrated. It thus appears that the tetramer adopts a non-globular shape. which causes the deviation from the Stokes radius corresponding to its molecular weight.  相似文献   

11.
The stability of the 37-amino acid peptide pramlintide, in aqueous solution, was studied as a function of pH and temperature. Samples of pramlintide formulated as a parenteral product were exposed to elevated temperatures and to realistic storage conditions for as long as 30 months. Pramlintide degradation was monitored by three high-performance liquid chromatography (HPLC) methods: a reversedphase (RP-HPLC) and a strong-cation exchange (SCX-HPLC) method for percentage purity determination by area normalization, plus a second RP-HPLC method for potency determinationversus external standards. The pH-rate profile for pramlintide shows increasing degradation rate constants with increasing pH over the range pH=3.5 to 5.0. The Arrhenius expression for pramlintide degradation at pH=4.0 over the temperature range 5°C to 50°C is In(k0)=37.39−21.900/RT, where k0 is the zero-order rate constant (in %/mo) for pramlintide degradation. The pramlintide parenteral product formulated at pH=4.0 is extremely stable, with percentage purity and percentage potency loss of only approximately 2% over 30 months at 5°C. The formulated pramlintide drug product has acceptable shelf life for long-term storage at 5°C and up to a 30-day patient use when stored at ambient temperature.  相似文献   

12.
We have determined the temperature dependence of the kinetics of entry into the first S phase of phytohemagglutinin-stimulated lymphocytes under conditions varying the stability of substrata over which the cells have settled. An exponential model was used to characterize entry into S phase. This model yields as parameters duration of lag period, t0, apparent first order rate constant for entry, k, and the number of cells committed to enter the first S phase, NA(t0). Values of t0 and NA(t0) show a 1.5-fold and 2.0-fold decrease and increase, respectively, over a 4°C temperature range and are independent of variation in substrate stability. The temperature dependence of the apparent first-order rate constant, k, however, is strongly influenced by stability. The observed activation energy increases from 3.0 kcal to 37 kcal when the substratum is agitated. This correlates well with reduced adherence of multicellular aggregates in agitated samples. The temperature dependencies for these three parameters are all numerically different, indicating that these parameters are determined by different rate-limiting processes. We propose that the mechanism mirrored by k is linked to the adherence of multicellular aggregates to the substratum.  相似文献   

13.
Experimentally determined free Ca ion concentrations, measured with a Ca-selective electrode, were compared with values calculated with a computer program utilizing stability constants of the chelating agents: NTA, EDTA, and EGTA used to set the free ion concentration in the range of 10?3 to 10?6m. In the presence of 0.1 m KCl, 2 mm MgCl2, 20 mm Hepes (pH 7.4), 2 mm ATP, 0.1 mm CaCl2 (total concentration), and various ligand concentrations the measured free Ca2+ levels were found to be approximately six to seven times greater than the computer-derived values. Apparent stability constants for Ca-ATP, Ca-EDTA, and Ca-EGTA were determined under these experimental conditions.  相似文献   

14.
Abstract

The aluminium complexes of acetic acid (ACT) have been studied using Potentiometric titrations under physiological conditions of temperature (37°C) and ionic strength (0.15 dm?3 dm?3 NaCI) and at different ligand to metal ratios. The variations of pH were measured with the help of a glass electrode calibrated daily in hydrogen ion concentrations. Results obtained within the pH range of 2.6–4.2 were analysed to determine stability constants using the SUPERQUAD program. Different complex combinations were considered during the calculation procedure, and evidence was found for ML2 mononuclear species beside binuclear hydroxo-complexes M2L(OH)2 and M2L(OH)3 and metal ion hydroxides. Speciation calculations based on the corresponding constants were then used to simulate species distributions.  相似文献   

15.
A new quartz crystal microbalance immunoassay for the detection of carcinoembryonic antigen (CEA) was developed by means of immobilizing anti-CEA onto magnetic CoFe2O4/SiO2 composite nanoparticles-functionalized biomimetic interface. Under optimal conditions, the frequency shift was proportional to the CEA concentration in the range of 2.5–55 ng/mL with a detection limit of 0.5 ng/mL at a signal-to-noise ratio of 3. Moreover, the immunosensor system showed an acceptable reproducibility and stability. Clinical serum specimens were assayed with this method, and the results were in acceptable agreement with those obtained from ELISA. Compared with the conventional ELISA assay, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the developed immunoassay protocol could be further extended for the determination of other antigens.  相似文献   

16.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 °C, but even at 95 °C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

17.
The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1 / 2) changed from − 65.3 to + 146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.  相似文献   

18.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   

19.
In order to improve the thermal stability (t1/2) and activity of lipase B from cold-adapted Candida antarctica (CALB), amino groups of the enzyme were chemically linked to a range of oxidized polysaccharides using a range of reducing agents. By chemically modifying CALB using 0.1% dextran (250 kDa) at pH 8.6 for 10 days using borane–pyridine complex as reducing agent, increased thermal stability (t1/2, 168 min at 70°C) and activity (65% higher specific activity) was achieved compared to the unmodified enzyme (t1/2, 18 min at 70°C). Improvements in thermostability were generally better with high molecular weight polymers such as dextran (40 and 250 kDa) or ficoll (70 and 400 kDa) in comparison to low molecular weight inulin (5 kDa). The shape of the polymer also appeared to be important with elongated, elipsoidal-shaped dextran providing better thermostabilization than spherical-shaped ficoll. Borane–pyridine complex was found to be a good, non-toxic reducing agent for improving thermostability, compared with sodium borohydride and sodium cyanoborohydride. An interesting finding was that, in all cases, specific activity of the modified enzymes increased with a concomitant increase in thermostability. This response defies the general principle of a trade-off between activity and stability, and demonstrates that chemical modification provides new avenues for improving the thermal stability of enzymes from psychrophiles without sacrificing their activity.  相似文献   

20.
Carbonaceous adsorbents based on sawdust pellets from coniferous tree species were obtained by carbonisation at different temperatures and different periods of time. The effect of NO2 adsorption in dry and wet condition on the sorption ability of the chars obtained was tested. The results have shown that NO2 sorption properties of chars depend on the conditions of pyrolysis and the conditions of adsorption. The best NO2 sorption capacity of 18.3 and 43.1 mg/g in dry and wet conditions, respectively, was noted for the char sample pyrolysed at 800 °C for 60 min. The FTIR spectra of the exhausted samples reveal a great increase in the intensity of the band at 1380 cm−1 assigned to the vibrations of –NO2, –ONO2 or , while in the DTG curves a new peak appears in the range 200–400 °C assigned to the release of nitrogen compounds of low stability in high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号