首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisomes are organelles that are almost ubiquitous in eukaryotic cells. They have, however, never been described in germ cells within the testis. Since some peroxisomal diseases like Adrenoleukodystrophy are associated with reduced fertility, we have re-investigated the peroxisomal compartment of the germinal epithelium of mice using in situ hybridization, immunohistochemistry, Western blotting and immunoelectron microscopy. Within the seminiferous tubules, peroxisomes are present in Sertoli cells and in germ cells. We could show that small-sized peroxisomes of typical ultrastructure are concentrated in spermatogonia and disappear during the course of spermatogenesis. Peroxisomes of spermatogonia differ in their relative protein composition from previously described peroxisomes of interstitial cells of Leydig. Since germ cells differentiate in mouse testis in a synchronized fashion, the disappearence of peroxisomes could be a suitable model system to investigate the degradation of an organelle as part of a physiological differentiation process in higher eukaryotes.  相似文献   

2.
 Testis organization and spermatogenesis, with the emphasis on spermiogenesis, in Opistognathus whitehurstii are described by ultrastructural and histochemical methods. The germinal epithelium is extremely reduced and restricted to the periphery of the testis, while most of the organ is occupied by a highly developed system of testicular efferent ducts. A semicystic type of spermatogenesis is observed and in the germinal epithelium spermatogenesis occurs only until the spermatidal stage. Young spermatids are released into the lumen of the testicular lobules and mature to sperm within the efferent duct system. The epithelial cells of these ducts are involved in protein and glycogen secretion and in phagocytosis of degenerating germ cells and residual bodies cast off by developing spermatids. On the basis of these functions, the testicular efferent duct system cells are considered to be homologous to the Sertoli cells. A correlation between a highly developed testicular efferent duct system and semicystic spermatogenesis is examined and a possible functional meaning of this apparently unusual mode of sperm production is proposed. Accepted: 18 March 1997  相似文献   

3.
Five reproductive classes of cobia Rachycentron canadum , caught along the Gulf of Mexico and the south-east Atlantic coast of the U.S.A., are described during the annual reproductive cycle. These are based upon changes in the testicular germinal epithelium and the stages of germ cells that are present: early maturation, mid maturation, late maturation, regression and regressed. During early maturation, the germinal epithelium is continuous from the testicular ducts to the periphery of the testis and active spermatogenesis occurs throughout the testis. In mid maturation, the germinal epithelium near the ducts becomes discontinuous, but it remains continuous distally. In late maturation, a discontinuous germinal epithelium extends all along the lobules to the testicular periphery; lobules are swollen with sperm and there is minimal spermatogenesis. The regression class is characterized by a discontinuous epithelium throughout the testis, sperm storage and widely scattered spermatocysts. Spermatogonial proliferation also occurs along the lobule walls and at the periphery of the testis. In regressed testes, spermatogonia exist only in a continuous or discontinuous germinal epithelium, although residual sperm are nearly always present in the lobules and ducts. The presence or absence of sperm is not an accurate indicator of reproductive classes. At the periphery of the testis in the regression and regressed classes, the distal portions of lobules elongate as cords of cells containing spermatogonia and Sertoli cells. All reproductive classes can be identified in paraffin sections, although plastic sections provide better resolution. Using maturation classes defined by changes in the germinal epithelium to describe testicular development and spermatogenesis gives a more accurate picture than does using the traditional terminology.  相似文献   

4.
The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates will increasingly clarify our understanding of vertebrate reproduction. J. Morphol. 277:1014–1044, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

6.
We have obtained a PrP-Cre-ER(T) transgenic mouse line (28.8) that selectively expresses in testis the tamoxifen-inducible Cre-ER(T) recombinase under the control of a mouse Prion protein (PrP) promoter-containing genomic fragment. Cre-ER(T) is expressed in spermatogonia and spermatocytes, but not in Sertoli and Leydig cells. We also established reporter PrP-L-EGFP-L transgenic mice harboring a LoxP-flanked enhanced green fluorescent protein (EGFP) Cre reporter cassette under the control of the same PrP promoter-containing genomic fragment that exhibits prominent EGFP expression in brain and testis. Using the PrP-L-EGFP-L as well as other Cre-reporter mice, we demonstrate that tamoxifen administration efficiently and selectively induces Cre-mediated recombination in the germ cell lineage. The established PrP-Cre-ER(T) line should provide a valuable tool for studying functions of germ cell-expressed genes involved in spermatogenesis.  相似文献   

7.
We identified adhesive junctions and gap junctions between Sertoli cells, between Sertoli and germ cells and between germ cells in the testis of P. fasciatum, a catfish of commercial relevance. To investigate the role of these junctions in spermatogenesis, as well as the molecular composition of the junctions, we performed an immunohistochemistry light microscopy as well as an immunogold labelling electron microscopy study with antibodies to adhesive and gap junctions proteins. Testes that were at different stages of spermatogenesis were used. Based on our morphological studies we speculate that Sertoli–germ and germ–germ cell adhesive junctions are important for maintaining the three-dimensional structure of the germinal cysts and an organized arrangement of the germ cells inside the cysts. Connexin 32 was identified in the germ cells and in the cysts walls. Our observations also suggest that Sertoli–germ and germ–germ cells gap junctions may be involved in the mechanism of synchronous development of germ cells.  相似文献   

8.
During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.  相似文献   

9.
Onset of spermatogenesis is associated with a wave of apoptosis, which limits its efficacy during the first cycles in most mammals. After the first cycles, the actual efficacy of spermatogenesis always remains below the theoretical yield. Among the germinal cells, spermatogonia are the main targets of physiological apoptosis. This physiological apoptosis partly depends on the relationships between germ cells and Sertoli cells. The impact of the Sertoli cell/germ cell number ratio on the efficacy of spermatogenesis is well accepted, the concept of density-dependent regulation in the seminiferous tubule was proposed in the early eighties. Since the steps of spermatogenesis require a continuous progression of the cell cycle rather than an arrest, germ cells might therefore be more sensitive to apoptosis. This may also lead to severe disturbances between proliferation and cell death. The first experiments designed to elucidate the mechanisms of germ cell apoptosis were based on hormonal deprivation or cryptorchidism. However, the link between hormonal or cellular action and cell survival remained to be established. Analysis of signal transduction pathways involved in germ cell apoptosis and their regulation were the next steps. The involvement of bcl-2 family genes has been confirmed, although the expression of some of its members remains more controversial. Data derived from overexpression of some genes (Bcl-2, Bcl-xl) or resulting from gene inactivation (Bax) at the testicular level have highlighted the role of these genes in the control of germ cell apoptosis and have also provided some evidence for the strict requirement for density-dependent regulation of spermatogenesis. More recently, variations in the pattern of expression of these genes or proteins helped to explain some of the discrepancies in the literature. The place of the Fas/Fas ligand system during the first cycle of spermatogenesis remains a matter of debate, with controversies concerning the precise site of expression of this oncogene and its receptor. Conversely, its role in the testis after chemotoxic or radiotoxic treatments is well established. However, the normal fertility of animals with a spontaneous inactivation of Fas or Fas L genes does not support a physiological role of these factors during spermatogenesis. While factors involved in TNF/TNF R1 (Tumor Necrosis Factor) are under study, some data have been reported concerning the role of TRAIL (TNFalpha Related Apoptosis Inducing Ligand) and its active or decoy receptors in the testis. Among the oncogenes which may modulate the apoptotic process, Kit/Stem Cell Factor is particularly interesting, as Kit is expressed in some germ cells and Leydig cells, whereas SCF is expressed by Sertoli cells. Its impact during gonadal development and in the survival and proliferation of differentiated spermatogonia has been clearly established. Using a transgenic mice model, in which the Kit gene was inactivated by the insertion of a nls-lacZ sequence in its first exon, we showed that one single copy of the gene was unable to sustain physiological spermatogenesis and fertility in male mice. Our results also suggest that the Kit gene might be expressed at different steps of spermatogenesis, with different signal transduction pathways and biological actions. Finally, analysis of the signal transduction pathways involved in testicular apoptosis and their mechanisms of control is one of the key steps to a better understanding of both impairment of spermatogenesis and the pathogenesis of certain germ cell tumours.  相似文献   

10.
Isolation of male germ-line stem cells; influence of GDNF   总被引:8,自引:0,他引:8  
The identification and physical isolation of testis stem cells, a subset of type A spermatogonia, is critical to our understanding of their growth regulation during the first steps of spermatogenesis. These stem cells remain poorly characterized because of the paucity of specific molecular markers that permit us to distinguish them from other germ cells. Thus, the molecular mechanisms driving the first steps of spermatogenesis are still unknown. We show in the present study that GFR alpha-1, the receptor for GDNF (glial cell line-derived neurotrophic factor), is strongly expressed by a subset of type A spermatogonia in the basal part of the seminiferous epithelium. Using this characteristic, we devised a method to specifically isolate these GFR alpha-1-positive cells from immature mouse testes. The isolated cells express Ret, a tyrosine kinase transmembrane receptor that mediates the intracellular response to GDNF via GFR alpha-1. After stimulation with rGDNF, the isolated cells proliferated in culture and underwent the first steps of germ cell differentiation. Microarray analysis revealed that GDNF induces the differential expression of a total of 1124 genes. Among the genes upregulated by GDNF were many genes involved in early mammalian development, differentiation, and the cell cycle. This report describes the first isolation of a pure population of GFR alpha-1-positive cells in the testis and identifies signaling pathways that may play a crucial role in maintaining germ-line stem cell proliferation and/or renewal.  相似文献   

11.
12.
Non seminomatous testicular germ cell tumors (NSTGCTs) express fetal stem cell markers and display dysregulation of connexin 43 expression. Persistence of fetal spermatogonial characteristics was implicated in the emergence of testicular germ cell tumors. The objective of this study was to analyze the tubular architecture in contralateral testes of patients with NSTGCT. We studied morphologic alterations, expression patterns of markers for the integrity of the germinal epithelium (gap junction proteins connexin 43 and 26), as well as of the embryonic markers c-KIT and placental alkaline phosphatase (PlAP), both established markers to detect carcinoma in situ (CIS). In all samples, tubules showing maturation of germ cells up to spermatozoa were observed. In addition, tubules with alterations in tubular architecture and with impaired spermatogenesis occurred. In tubules showing aberrant spermatogenesis, connexin 43 (Cx43) signal was down-regulated and a shift of signal from gap junctions to the cytoplasm occurred. Concomitantly, Cx26 was found highly up-regulated in tubules with incomplete and aberrant germ cell maturation. All testes exhibited single spermatogonia with positive reaction for c-KIT and a significant positive correlation was found between the mean number of c-KIT positive spermatogonia per tubule and the percentage of tubules presenting severely impaired spermatogenesis. Our data show alterations of the normal architecture of the germinal epithelium and disturbances of spermatogenesis in the contralateral testes of patients with NSTGCT in all cases evaluated. The concomitant occurrence of c-KIT positive spermatogonia and defects in tubular architecture is in line with the hypothesis that patients with NSTGCT suffer from disturbed germ cell development.  相似文献   

13.
14.
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.  相似文献   

15.
Peroxisomes are cell organelles that perform multiple functions in the metabolism of lipids and of reactive oxygen species. They are present in most eukaryotic cells. However, they are believed to be absent in spermatozoa and they have never been described in male germ cells. We have used the immortalized germ cell line GC1spg to investigate the expression of peroxisomal proteins in germ cells of mice. The GC1spg cells represent the differentiation state of type B spermatogonia or preleptotene spermatocytes. We could show that peroxisomal membrane proteins like Pmp70 and Pex14p as well as peroxisomal matrix proteins like catalase or acyl CoA oxidase are expressed in GC1spg cells. All these proteins were colocalized in the same structures within the cells. Furthermore, by electron microscopy we have identified subcellular particles with an ultrastructural appearance that is characteristic of peroxisomes. This is the first report demonstrating the peroxisomal compartment in male germ cells of mice.  相似文献   

16.
During testis development, proliferation and death of gonocytes are highly regulated to establish a standard population of adult stem spermatogonia that maintain normal spermatogenesis. As Transforming Growth Factor beta (TGFbeta) can regulate proliferation and apoptosis, we investigated its expression and functions during testis development. We show that TGFbeta2 is only expressed in quiescent gonocytes and decreases gonocyte proliferation in vitro. To study the functions of TGFbeta2, we developed conditional mice that invalidate the TGFbeta receptor type II in germ cells. Most of the knock-out animals die during fetal life, but the surviving adults show a reduced pool of spermatogonial stem/progenitor cells and become sterile with time. Using an organ culture system mimicking in vivo development, we show higher proportions of proliferating and apoptotic gonocytes from 13.5 dpc until 1 dpp, suggesting a reduction of germinal quiescence in these animals. Conversely, a 24-hour TGFbeta2-treatment of explanted wild-type testes, isolated every day from 13.5 dpc until 1 dpp, increased the duration of quiescence.These data show that the TGFbeta signaling pathway plays a physiological role during testis development by acting directly as a negative regulator of the fetal and neonatal germ cell proliferation, and indicate that the TGFbeta signaling pathway might regulate the duration of germ cell quiescence and is necessary to maintain adult spermatogenesis.  相似文献   

17.
18.
N-Myc downstream regulated gene 2 (NDRG2) is expressed in the testis of adult animals and is involved in cell differentiation and development. However, little is known about the expression pattern of NDRG2 in the testis during postnatal development. Here, we show that NDRG2 is consistently expressed in Leydig cells in the rat testis during postnatal development. However, its expression has also been detected at a high frequency in spermatogenic cells of the seminiferous tubules in young rats but at a much lower frequency in adult rats. Furthermore, high levels of NDRG2 expression have been found in methoxyacetic-acid-induced apoptotic germ cells, particularly at stages X–XIII of the seminiferous epithelium cycle of adult rats. Interestingly, high levels of NDRG2 expression have also been observed in spontaneously apoptotic germ cells in the seminiferous tubules of young and adult rats. Thus, the expression of NDRG2 in germ cells seems to alter during spermatogenesis. These findings suggest that NDRG2 regulates testicular development and spermatogenesis in rats and is involved in the physiological and pathological apoptosis of germ cells. Wu-Gang Hou, Yong Zhao, and Lan Shen contributed equally to this study. This study was supported by the Natural Science Foundation of China (2006: no. 30600340; 2007: no. 30771138; 2008: no. 30871309).  相似文献   

19.
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号