首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last decade improvements in the histological processing of cortical tissue in conjunction with the investigation of additional mammalian species in comparative brain studies has expanded the information available to guide theories of cortical organization. Here I review some of these recent findings in the somatosensory system with an emphasis on modules related to specializations of the peripheral sensory surface. The diversity of modular representations, or cortical “isomorphs” suggest that information from the sensory sheet guides many of the features of cortical maps and suggest that cortex is not constrained to form circular units in the form of a traditional cortical column.  相似文献   

2.
The presence of "maps" in sensory cortex is a hallmark of the mammalian nervous system, but the functional significance of topographic organization has been called into question by physiological studies claiming that patterns of neural behavioral activity transcend topographic boundaries. This paper discusses recent behavioral and physiological studies suggesting that, when animals or human subjects learn perceptual tasks, the neural modifications associated with the learning are distributed according to the spatial arrangement of the primary sensory cortical map. Topographical cortical representations of sensory events, therefore, appear to constitute a true structural framework for information processing and plasticity.  相似文献   

3.
The functional organization of adult cerebral cortex is characterized by the presence of highly ordered sensory and motor maps. Despite their archetypical organization, the maps maintain the capacity to rapidly reorganize, suggesting that the neural circuitry underlying cortical representations is inherently plastic. Here we show that the circuitry supporting motor maps is dependent upon continued protein synthesis. Injections of two different protein synthesis inhibitors into adult rat forelimb motor cortex caused an immediate and enduring loss of movement representations. The disappearance of the motor map was accompanied by a significant reduction in synapse number, synapse size, and cortical field potentials and caused skilled forelimb movement impairments. Further, motor skill training led to a reappearance of movement representations. We propose that the circuitry of adult motor cortex is perpetually labile and requires continued protein synthesis in order to maintain its functional organization.  相似文献   

4.
Auditory cortex mapmaking: principles, projections, and plasticity   总被引:3,自引:0,他引:3  
Schreiner CE  Winer JA 《Neuron》2007,56(2):356-365
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. Despite their intuitive explanatory power, the functions of and rules for organizing maps and their plasticity are not well understood. Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.  相似文献   

5.
Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli.  相似文献   

6.
The functional organization of the barrel cortex   总被引:4,自引:0,他引:4  
Petersen CC 《Neuron》2007,56(2):339-355
The tactile somatosensory pathway from whisker to cortex in rodents provides a well-defined system for exploring the link between molecular mechanisms, synaptic circuits, and behavior. The primary somatosensory cortex has an exquisite somatotopic map where each individual whisker is represented in a discrete anatomical unit, the "barrel," allowing precise delineation of functional organization, development, and plasticity. Sensory information is actively acquired in awake behaving rodents and processed differently within the barrel map depending upon whisker-related behavior. The prominence of state-dependent cortical sensory processing is likely to be crucial in our understanding of active sensory perception, experience-dependent plasticity and learning.  相似文献   

7.
The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl''s gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.  相似文献   

8.
The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex.  相似文献   

9.
The layout of sensory brain areas is thought to subtend perception. The principles shaping these architectures and their role in information processing are still poorly understood. We investigate mathematically and computationally the representation of orientation and spatial frequency in cat primary visual cortex. We prove that two natural principles, local exhaustivity and parsimony of representation, would constrain the orientation and spatial frequency maps to display a very specific pinwheel-dipole singularity. This is particularly interesting since recent experimental evidences show a dipolar structures of the spatial frequency map co-localized with pinwheels in cat. These structures have important properties on information processing capabilities. In particular, we show using a computational model of visual information processing that this architecture allows a trade-off in the local detection of orientation and spatial frequency, but this property occurs for spatial frequency selectivity sharper than reported in the literature. We validated this sharpening on high-resolution optical imaging experimental data. These results shed new light on the principles at play in the emergence of functional architecture of cortical maps, as well as their potential role in processing information.  相似文献   

10.
Amedi A  Malach R  Pascual-Leone A 《Neuron》2005,48(5):859-872
Recent studies emphasize the overlap between the neural substrates of visual perception and visual imagery. However, the subjective experiences of imagining and seeing are clearly different. Here we demonstrate that deactivation of auditory cortex (and to some extent of somatosensory and subcortical visual structures) as measured by BOLD functional magnetic resonance imaging unequivocally differentiates visual imagery from visual perception. During visual imagery, auditory cortex deactivation negatively correlates with activation in visual cortex and with the score in the subjective vividness of visual imagery questionnaire (VVIQ). Perception of the world requires the merging of multisensory information so that, during seeing, information from other sensory systems modifies visual cortical activity and shapes experience. We suggest that pure visual imagery corresponds to the isolated activation of visual cortical areas with concurrent deactivation of "irrelevant" sensory processing that could disrupt the image created by our "mind's eye."  相似文献   

11.
A spatially congruent framework for orientation encoding in the primate striate visual cortex is proposed and discussed. This framework, which is based on the foot-of-normal representation of straight lines, not only provides a reasonable explanation for the centric organization of the orientation specificity in the primate striate visual cortex but also accounts for a series of experimentally verified intriguing phenomena such as the lack of orientation specificity around the centres of the orientation modules (i.e. the singularities), the increased neural activity at these same places, and the relatively uniform distribution of the singularities along the ocular dominance columns. The proposed framework can also explain and predict the possible existence of centric modules in other cortical regions containing topographical maps of two-dimensional sensory spaces (e.g. pre-striate and somatic sensory cortex). A simple one-layer neural model of the basic centric module in the framework is presented, and simulation results are discussed.  相似文献   

12.
In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey.  相似文献   

13.
Learning to hear: plasticity of auditory cortical processing   总被引:1,自引:0,他引:1  
Sensory experience and auditory cortex plasticity are intimately related. This relationship is most striking during infancy when changes in sensory input can have profound effects on the functional organization of the developing cortex. But a considerable degree of plasticity is retained throughout life, as demonstrated by the cortical reorganization that follows damage to the sensory periphery or by the more controversial changes in response properties that are thought to accompany perceptual learning. Recent studies in the auditory system have revealed the remarkably adaptive nature of sensory processing and provided important insights into the way in which cortical circuits are shaped by experience and learning.  相似文献   

14.
The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending influence of cortically-defined “priors”.  相似文献   

15.
The amygdala plays a central role in evaluating the behavioral importance of sensory information. Anatomical subcortical pathways provide direct input to the amygdala from early sensory systems and may support an adaptively valuable rapid appraisal of salient information. However, the functional significance of these subcortical inputs remains controversial. We recorded magnetoencephalographic activity evoked by tones in the context of emotionally valent faces and tested two competing biologically motivated dynamic causal models against these data: the dual and cortical models. The dual model comprised two parallel (cortical and subcortical) routes to the amygdala, whereas the cortical model excluded the subcortical path. We found that neuronal responses elicited by salient information were better explained when a subcortical pathway was included. In keeping with its putative functional role of rapid stimulus appraisal, the subcortical pathway was most important early in stimulus processing. However, as often assumed, its action was not limited to the context of fear, pointing to a more widespread information processing role. Thus, our data supports the idea that an expedited evaluation of sensory input is best explained by an architecture that involves a subcortical path to the amygdala.  相似文献   

16.
 Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment. Received: 14 January 2002 / Accepted: 15 March 2002 Correspondence to: M.P. Kilgard (e-mail: kilgard@utdallas.edu, Tel.: +1-972-8832345, Fax: +1-972-8832491)  相似文献   

17.
Sensory regions of neocortex are organized as arrays of vertical columns composed of cells that share similar response properties, with the orientation columns of the cat's visual cortex being the best known example. Interest in how sensitivity to different stimulus features first emerges in the columns and how this selectivity is refined by subsequent processing has fueled decades of research. A natural starting point in approaching these issues is anatomy. Each column traverses the six cortical layers and each layer has a unique pattern of inputs, intrinsic connections and outputs. Thus, it makes sense to explore the possibility of corresponding laminar differences in sensory function, that is, to examine relationships between morphology and physiology. In addition, to help identify general patterns of cortical organization, it is useful to compare results obtained from different sensory systems and diverse species. The picture that emerges from such comparisons is that each cortical layer serves a distinct role in sensory function. Furthermore, different cortices appear to share some common strategies for processing information but also have specialized mechanisms adapted for the demands of specific sensory tasks.  相似文献   

18.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307–317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4δ), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87--97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

19.
Working memory enables us to hold in our ''mind''s eye'' the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain-imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on-line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image-based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long-term memory.  相似文献   

20.
Organizational levels of the cerebral cortex: An integrated model   总被引:1,自引:0,他引:1  
We propose a theoretical model of the cerebral cortex which is based on its cellular components and integrates its different levels of organization: (1) cells have general adaptive and memorization properties; (2) cortical columns are repetitive interneuronal circuits which determine an adaptive processing specific to the cerebral cortex; (3) cortical maps effect selective combinations which are very efficient to learn basic behaviourial adaptations such as invariant recognition of forms, visually-guided hand movements, or execution of structured motor programs; (4) the network between cortical areas has a global architecture which integrates successive learning experiences into coherent functions such as the human language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号