首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrolysis of benzyloxycarbonyl-GlyGlyPhe by nitro(Tyr 248)carboxypeptidase A over the pH range 4.88–8.04 has been examined. The nitroenzyme retains appreciable activity near pH 6.5, and the limiting value of Km is scarcely affected. The peptidase activity has a pH dependence characterized by the following parameters: pKE1 of 6.37 ± 0.19 and pKE2 of 6.60 ± 0.17 in kcatKm, and apparent pK of 5.59 ± 0.06 in Kcat. A spectroscopic pK of 6.75 ± 0.01, attributable to the nitro-Tyr 248 residue, has been determined. This correlates with the base-limb pKE2 in the kcatKm profile, which appears to be shifted from a higher value, pKE2 of 9.0, for the native enzyme. The single (acid-limb) pK which characterizes the kcat profile of the native enzyme is also found to be perturbed to a lesser extent by nitration. A kinetically competent reverse protonation mechanism, based on chemical modification and crystallographic evidence for the enzyme, is described.  相似文献   

2.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

3.
Log-phase cells of Neurospora crassa, grown in standard minimal medium, possess an energy-dependent transport system for inorganic phosphate, with a K12 (at pH 5.8) of 0.123 mM and a Jmax of 1.64 mmoles/l cell water per min. Like the PO43? transport system in yeast, the Neurospora system is stimulated by high intracellular K+. In addition, it is inhibited by high extracellular salt concentrations, an effect which may be related to the known depolarization of the Neurospora plasma membrane at high salt concentrations.The most striking property of the system is its strong dependence upon the extracellular pH. From pH 4.0 to pH 7.3, the Jmax remains essentially constant but the K12 increases nearly 400-fold, from 0.01 to 3.62 mM. The increase cannot be accounted for by a single system with a preference for H2PO4? (which would show only a 3-fold increase in apparent K12 over this pH range) nor by two systems with different affinities and pH optima (which would display nonlinear double-reciprocal plots at intermediate pH values). It can be explained, however, by a model in which OH? or H+ is assumed to act as a modifier of the transport system, altering its affinity for substrate.  相似文献   

4.
The longitudinal relaxation rate (1T1p) of water protons was studied in solutions of Mn(II)-concanavalin A at a number of frequencies. These relaxation rates were lowered in the presence of a variety of saccharides which have affinities for concanavalin A which range over two orders of magnitude. A good correlation was found in which saccharides which bind tightly have the greatest effect and saccharides which bind weakly or not at all have little effect on the 1T1p values. The temperature dependence of the proton relaxation rates showed that the lowering of these rates in the presence of saccharides was most likely due to a change in the exchange rate of solvent interacting with protein-bound Mn(II), 1Tm.An analysis of the temperature and frequency dependence of the 1T1p and 1T2p (transverse) solvent proton relaxation rates resulted in evaluation of a number of parameters for solvent water molecules interacting in the first coordination sphere of Mn(II) bound to concanavalin A. The ratio of the number of water molecules (q) to the Mn(II)-proton distance (r) obtained from a computer fit of the data over a limited temperature range is in accord with the findings of Koenig et al. ((1973) Proc. Nat. Acad. Sci.70, 475) and Meirovitch and Kalb ((1973) Biochim. Biophys. Acta303, 258). However, our studies of 1T1p and 1T2p of water over a more extensive temperature range are best fit with the following conclusions: at low temperatures (<20 °C), the data are consistent with an outer-sphere relaxation process. At higher temperatures (> 30 °C), the water molecule in the inner coordination sphere of the bound Mn(II) begins exchanging more rapidly and contributes to the relaxation processes (1T1p and 1T2p). The relaxation time of protons in the inner coordination shell, T1M, contributes over the entire temperature range and produces a frequency dependence in the relaxivity data from 6 to 100 MHz since the contributions to the correlation times are in the range 10?9-10?8 sec.  相似文献   

5.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

6.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III)) with ferri- and ferrocyanide and of C(III) with O2? and CO2? was determined in H2O and in 2H2O in the temperature range 5–35 °C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2Ok2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

7.
When protonation reactions comprise a part of biochemical reaction schemes in vivo, the temperature sensitivities of chemical equilibria and of enzymatic rates are modulated according to the variation of pH with TB (body temperature). Two patterns of pH regulation have been established, each pattern controlling the ionization states of different titratable groups as TB changes: dpHdTB ? 0 pH unit/° C for the blood of heterothermic mammals (constant charge for phosphate groups, e.g.), and dpHdTB ? ?0.017 pH unit/° C for intracellular and blood compartments of vertebrate and invertebrate poikilotherms (constant charge for histidine imidazole and -SH groups). Calculations demonstrate the feasibility of the following. (i) A large effect of TB on a metabolic branch point is possible when the competition of two pathways for common substrate is governed by two titratable groups with large differences in ΔHio values (ionization enthalpy), e.g., phosphate and alpha amino groups. (ii) The effect of temperature on the amount of free energy released from equilibrium chemical reactions (as might occur for reactions not controlled by rate-limiting enzymes) would depend strongly on the value of ΔHi0, and on which of the two pH regulation patterns was present. (iii) If free energy released from ionization reactions were coupled to activation processes of enzyme catalysis, so as to effectively decrease free energy barriers, the temperature sensitivities of reaction rates would be smaller in pH environments in which pH varied inversely with TB than in environments of constant pH, regardless of ΔHi0. (iv) Different mechanisms for the modulation of metabolism as a function of TB might have evolved for animals with different values of dpHdTB.  相似文献   

8.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

9.
Studies were made on the boundary conditions for thermotropic ovalbumin gelation at pH within the range 2.5 to 10.0. The pH dependence of the gelation threshold, C0, and denaturation temperature, Td, were obtained. The dependence C0(pH) has a sharp minimum close to the isoelectric point (pl). Over pH range 2.5 to 4.0 the dependence Td(pH) is linear; although above pI it shows unusual behaviour. Td increases smoothly, becoming a constant value (Td=80°C) at pH 7. Analysis of the temperature dependence of Leu's line integral intensity in the p.m.r. spectrum of ovalbumin shows that the temperature threshold of thermotropic gelation closely approximates to Td. A diagram for the state of an ovalbumin -water system was constructed in temperature-concentration-pH coordinates. The dependences of the initial shear modulus for thermotropic ovalbumin gels on the concentration (0.06≤C≤0.25g/cm3 were obtained at pH 4.0, 7.0, 8.5, 10.0. They are equivalent to the concentration dependence of the equilibrium elastic modulus Ee(C). The dependences obtained may be reduced to the theoretical master dependence of Hermans, Ee(rmC?), where C?=C/C0 is the reduced concentration. Hermans' theory, based o the model for random cross-linking of linear identical macromolecules without cyclization, adequately describes the equilibrium elastic properties of thermotropic ovalbumin gels.  相似文献   

10.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

11.
The effect of pH on the kinetic parameters for the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide was investigated from pH 3.0 to 7.0. Chloroperoxidase was found to be stable throughout the pH range studied. Initial rate conditions were determined throughout the pH range. The Vmax for the demethylation reaction exhibited a pH optimum at approximately 4.5. The Km for N,N-dimethylaniline increased with decreasing pH, while the Km for ethyl hydroperoxide varied in a manner paralleling Vmax. Comparison of the VmaxKm values for N,N-dimethylaniline and ethyl hydroperoxide indicated that the interaction of N,N-dimethylaniline with chloroperoxidase compound I was rate-limiting below pH 4.5, while compound I formation was rate-limiting above pH 4.5. The log of the VmaxKm for ethyl hydroperoxide was independent of pH, indicating that chloroperoxidase compound I formation is not affected by ionizations in this pH range. The plot of the log of the VmaxKm for N,N-dimethylaniline versus pH indicated an ionization on compound I with a pK of approximately 6.8. The plot of the log of the Vmax versus pH indicated an ionization on the compound I-N,N-dimethylaniline complex, with a pK of approximately 3.1. The results show that chloroperoxidase can demethylate both the protonated and neutral forms of N,N-dimethylaniline (pK approximately 5.0), suggesting that hydrophobic binding of the arylamine substrate is more important in catalysis than ionic bonding of the amine moiety. For optimal catalysis, a residue in the chloroperoxidase compound I-N,N-dimethylaniline complex with a pK of approximately 3.1 must be deprotonated, while a residue in compound I with a pK of approximately 6.8 must be protonated.  相似文献   

12.
Binding of the chromogenic ligand p-nitrophenyl α-d-mannopyranoside to concanavalin A was studied in a stopped-flow spectrometer. Formation of the protein-ligand complex could be represented as a simple one-step process. No kinetic evidence could be obtained for a ligand-induced change in the conformation of concanavalin A, although the existence of such a conformational change was not excluded. The entire change in absorbance produced on ligand binding occurred in the monophasic process monitored in the stopped-flow spectrometer. The value of the apparent second-order rate constant (ka) for complex formation (ka = 54,000 s?1m? at 25 °C, pH 5.0, Γ/2 0.5) was independent of the protein concentration when the protein was in the range of 233–831 μm in combining sites and in excess of the ligand. The apparent first-order rate constant (k?a) for dissociation of the complex was obtained from the rate constant for the decomposition of the complex upon the addition of excess methyl α-d-mannopyranoside (k?a = 6.2 s?1 at 25 °C, pH 5.0, Γ/2 0.5). The ratio ka?a (0.9 × 104m?1) was in reasonable agreement with value of 1.1 ± 0.1 × 104m?1 determined for the equilibrium constant for complex formation by ultraviolet difference spectrometry. Plots of ln(kaT) and ln(kaT) vs 1T were linear (T is temperature) and were used to evaluate activation parameters. The enthalpies of activation for formation and dissociation of the complex are 9.5 ± 0.3 and 16.8 ± 0.2 kcal/mol, respectively. The unitary entropies of activation for formation and dissociation of the complex are 2.8 ± 1.1 and 1.3 ± 0.7 entropy units, respectively. These entropy changes are much less than those usually associated with substantial changes in the conformation of proteins.  相似文献   

13.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

14.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

15.
Proton inventory investigations of the hydrolysis N-acetylbenzotriazole at pH 3.0 (or the equivalent point on the pD rate profile) have been conducted at two different temperatures and at ionic strengths ranging from 0 to 3.0 M. The solvent deuterium isotope effects and proton inventories are remarkably similar over this wide range of conditions. The proton inventories suggest a cyclic transition state involving four protons contributing to the solvent deuterium isotope effect for the water-catalyzed hydrolysis. The hydrolysis data are described by the equation kn = ko (1 ? n + nπa1)4 with πa1 ~ 0.74, where ko is the observed first-order rate constant in protium oxide, n is the atom fraction of deuterium in the solvent, kn is the rate constant in a protium oxide-deuterium oxide mixture, and πa1 is the isotopic fractionation factor.  相似文献   

16.
17.
The effects of absolute temperature (T), ionic strength (μ), and pH on the polymerization of tobacco mosaic virus protein from the 4 S form (A) to the 20 S form (D) were investigated by the method of sedimentation velocity. The loading concentration in grams per liter (C) was determined at which a just-detectable concentration (β) of 20 S material appeared. It was demonstrated experimentally that under the conditions employed herein, an equilibrium concentration of 20 S material was achieved in 3 h at the temperature of the experiment and that 20 S material dissociated again in 4 h or less to 4 S material either upon lowering the temperature or upon dilution. Thus, the use of thermodynamic equations for equilibrium processes was shown to be valid. The equation used to interpret the results, log (C?β) = constant + (ΔH12.3RT) + (ΔW1el2.3RT) ? K′ + ζpH, was derived from three separate models of the process, the only difference being in the anatomy of the constant; thus, the method of analysis is essentially independent of the model. ΔH1 and ΔW1el are the enthalpy and the change in electrical work per mole of A protein (the trimer of the polypeptide chain), Ks is the salting-out constant on the ionic strength basis, ζ is the number of moles of hydrogen ion bound per mole of A protein in the polymerization, and R is the gas constant. The three models leading to this equation are: a simple 11th-order equilibrium between A1 (the trimer of the polypeptide chain) and D, either the double disk or the double spiral of approximately the same molecular weight, designated model A; a second model, designated B, in which A1 was assumed to be in equilibrium with D at the same time that it is in equilibrium with A2, A3, etc., dimers and trimers, etc., of A1 in an isodesmic system; and a phase-separation model, designated model C, in which A protein is treated as a soluble material in equilibrium with D, considered as an insoluble phase. From electrical work theory, ΔWel1/T was shown to be essentially independent of T; therefore, in experiments at constant μ and constant pH the equation of log (C ? β) versus 1/T is linear with a slope of ΔH1/2.3R. The results fit such an equation over nearly a 20 °C-temperature range with a single value of ΔH1 of +32 kcal/mol A1. Results obtained when T and pH were held constant but μ was varied did not fit a straight line, which shows that more than simple salting-out is involved. When the effect of ionic strength on the electrical work contribution was considered in addition to salting-out, the data were interpreted to indicate a value of ΔW1el of 1.22 kcal/mol A1 at pH 6.7 and a value of 4.93 for Ks. When μ and T were held constant but pH was varied, and when allowance was made for the effect of pH changes on the electrical work contribution, a value of 1.1 was found for ζ. This means that something like 1.1 mol of hydrogen ion must be bound per mole of A1 protein in the formation of D. When this is added to the small amount of hydrogen ion bound per A1 before polymerization, at the pH values used, it turned out that for D to be formed, 1.5 H+ ions must be bound per A1 or 0.5 per protein polypeptide chain. This amounts to 1 H+ ion per polypeptide chain for half of the protein units, presumably those in one but not the other layer of the double disk or turn of the double spiral. When polymerization goes beyond the D stage, as shown by previously published data, additional H+ ions are bound. Simultaneous osmotic pressure studies and sedimentation studies were carried out, in both cases as a function of loading concentration C. These results were in complete disagreement with models A and C but agreed reasonably well with model B. The sedimentation studies permitted evaluation of the constant, β, to be 0.33 g/liter.  相似文献   

18.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

19.
20.
Oxygen-18 exchange techniques were applied to the dehydration of bicarbonate catalyzed by human carbonic anhydrase C. The rates of depletion of oxygen-18 from labeled bicarbonate were measured for both the catalyzed and uncatalyzed reactions at pH 9.4 and 25 °C. The equilibrium dissociation constant of the enzyme-substrate complex K is 0.321 ± 0.040 m and kenz = k2Km is (8.3 ± 1.9) × 105m?1 sec?1 under these conditions. On the basis of these results it is demonstrated that the oxygen-18 exchange technique is capable of measuring K and kenz for the carbonic anhydrase catalyzed dehydration of bicarbonate at a high pH range in which other kinetic techniques are not effective.It was also shown that the oxygen-18 exchange technique is an effective micromethod for the determination of carbonic anhydrase. Rates of isotopic depletion of labeled bicarbonate (in solutions of the enzyme) which fall outside the limits of error for the uncatalyzed rate of depletion demonstrate that this technique can detect concentrations of human carbonic anhydrase C as low as 5 × 10?11m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号