首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cladistic analysis of forty-one species, belonging to ten genera, of the Cidariini sensu Herbulot from the Holarctic and the Indo-Australian areas, was performed using seventy-seven characters including larval and pupal data. Eight most parsimonious cladograms were found (length 398, CI 0.30, RI 0.70). The monophyly of the Cidariini is demonstrated, using selected species of Xanthorhoini sensu Herbulot as the outgroup. The relationships among the genera are as follows: ( Ecliptopera ( Eulithis ( Cidaria (( Plemyria ( Chloroclysta , Dysstroma ))(( Thera , Pennithera ) ( Heterothera ))))). This result suggests some taxonomic changes: Dysstroma Hübner, stat. rev. and Chloroclysta Hübner stat. rev. are sister taxa; Heterothera Inoue stat. rev. includes Viidaleppia Inoue, syn.n., Heterothera firmata (Hübner) comb.n. is transferred from Pennithera Viidalepp to Heterothera sensu lato . The results of confirmation and incongruence tests suggest that the characters from adult and immature stages exhibit the same evolutionary pattern. Thus the phylogeny derived from the combined data matrix does not give a misleading conclusion, even though there are many missing states in the larval data set.  相似文献   

2.
In species differentiation, characters may not diverge synchronously, and there are also processes that shuffle character states in lineages descendant from a common ancestor. Species are thus expected to show some degree of incongruence among characters; therefore, taxonomic delimitation can benefit from integrative approaches and objective strategies that account for character conflict. We illustrate the potential of exploiting conflict for species delimitation in a study case of ground beetles of the subgenus Carabus (Mesocarabus), where traditional taxonomy does not accurately delimit species. The molecular phylogenies of four mitochondrial and three nuclear genes, cladistic analysis of the aedeagus, ecological niche divergence and morphometry of pronotal shape in more than 500 specimens of Mesocarabus show that these characters are not fully congruent. For these data, a three‐step operational strategy is proposed for species delimitation by (i) delineating candidate species based on the integration of incongruence among conclusive lines of evidence, (ii) corroborating candidate species with inconclusive lines of evidence and (iii) refining a final species proposal based on an integrated characterization of candidate species based on the evolutionary analysis of incongruence. This procedure provided a general understanding of the reticulate process of hybridization and introgression acting on Mesocarabus and generated the hypothesis of seven Mesocarabus species, including two putative hybrid lineages. Our work emphasizes the importance of incorporating critical analyses of character and phylogenetic conflict to infer both the evolutionary history and species boundaries through an integrative taxonomic approach.  相似文献   

3.
Total evidence requires exclusion of phylogenetically misleading data   总被引:8,自引:1,他引:7  
Treating all available characters simultaneously in a single data matrix (i.e. combined or simultaneous analysis) is frequently called the 'total evidence' (TE) approach, following Kluge's introduction of the term in 1989, quoting Carnap (1950) . However, the general principle and one of the possible procedures involved in its application are often confused. The principle, first enunciated within the context of inductive logic by Carnap in 1950, did not refer to a particular procedure, and TE meant using all relevant knowledge, rather than a combined analysis of all available data. Using TE, all relevant knowledge should be taken into account, including the fact that some data are probably misleading as indicators of species phylogeny and should be discarded. Based on the assumption that molecular partitions have some biological significance (process partitions obtained from nonrandom homoplasy or from 'processes of discord'), we suggest that separate analyses constitute an important exploratory investigation, while the phylogenetic tree itself should be produced by a final combined analysis of all relevant data. Given that the concept of process partitions is justified and that reliability cannot be evaluated using any robustness measure from a single combined analysis, the analysis of multiple data sets involves five steps: (1) perform separate analyses without consensus trees in order to assess reliability of clades through their recurrence and improve the detection of artifacts; (2) test significance of character incongruence, using, for example, pairwise ILD tests in order to identify the sets responsible for incongruence; (3) replace likely misleading data with question marks in the combined data matrix; (4) perform simultaneous analysis of this matrix without the misleading data; (5) assess the reliability of clades found by the combined analysis by computing their recurrence within the previous separate analyses, giving priority to repeatability.  相似文献   

4.
Ontogenetic evidence for the Paleozoic ancestry of salamanders   总被引:2,自引:0,他引:2  
The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.  相似文献   

5.
Growth of inhibitory innervation in a lobster muscle   总被引:2,自引:0,他引:2  
The fine structure of inhibitory innervation to a limb muscle was examined in larval, juvenile, and adult lobsters. The innervation is essentially similar in qualitative features among these different stages, although there are some marked quantitative changes associated with growth. From being localized to discrete regions in the larval muscle, the inhibitory innervation spreads to groups of muscle fibers in the early juvenile muscle and to single fibers in the late juvenile and adult muscles. Concurrently, its neuromuscular synapses enlarge in area, become perforated, and acquire more active sites of transmitter release. Inhibitory nerve terminals occur in close proximity to their excitatory counterparts in the muscles of larval and early juvenile stages, although in later stages this juxtaposition occurs preferentially in some muscle fibers but not others. The inhibitory innervation is, nevertheless, much more restricted in occurrence than is the excitatory innervation.  相似文献   

6.
Identifying the mechanisms maintaining population structure in marine fish species with more than a single dispersing life stage is challenging because of the difficulty in tracking all life stages. Here, a two‐stage otolith microchemistry approach to examining life‐stage movement was adopted, tracking a year‐class from the juvenile to adult stage and inferring larval sources from clustering, in order to consider the mechanisms maintaining population structuring in North Sea cod. Clustering of near‐core chemistry identified four clusters, two of which had either a southern or northern affinity and were similar to juvenile edge chemistry. The other two clusters, common to the central North Sea, had intermediate chemical composition and may have reflected either larval mixing in this region or a lack of geographic heterogeneity in the elemental signature. From the comparison of whole juvenile and the corresponding component of adult otoliths, adults from the southern North Sea mostly recruited from adjacent nursery grounds. In contrast, many adults in the northern North Sea had a juvenile chemistry consistent with the Skagerrak and juveniles from the northern Skagerrak site had a near‐core chemistry consistent with the northern North Sea. Similarities in otolith chemistry were consistent with retention of early life stages at a regional level and also juvenile and adult fidelity. The links between the northern North Sea and Skagerrak indicate natal homing, which when considered in the context of genetic evidence is suggestive of philopatry. The approach used here should be useful in exploring the mechanisms underlying population structuring in other species with multiple dispersive life stages and calcified hard parts.  相似文献   

7.
Production of bay anchovy Anchoa mitchilli is highest in the larval and juvenile stages. The interplay between vital rates, stage durations, prey resources, and anchovy abundance ultimately determines the relative magnitude of recruitment (which in the model varies by about three-fold) and of stage-specific production. Changes in adult seasonal spawning patterns that increase the number of larval survivors result in only a slight increase in overall production due to density-dependent decreases in growth rates of later life stages. Bay anchovy in the mid-Chesapeake Bay may reach a compensatory threshold during late summer-autumn as fish growth is affected by competition for food resources. Density dependence in the population is evident in the relationships between spawner-recruit, size-recruit, and production of larval or juvenile to young-of-the-year life stages. Density-dependent growth acts differentially upon the early life stage that exceeds the compensatory threshold in any given year, due either to environmental variability or population size, or both. This could explain partially the relatively low recruitment variability observed for this anchovy.  相似文献   

8.
In many marine invertebrates with biphasic life cycles, juvenile/adult traits begin to develop before metamorphosis. For structures that are present at multiple developmental stages, but have distinct larval and adult forms, it is unclear whether larval and adult structures have shared or distinct developmental origins. In this study, we examine the relationship between the larval and adult eyes in the polychaete Capitella teleta. In addition, we describe a novel marker for larval and juvenile photoreceptor cells. Infrared laser deletion of individual micromeres in early embryos suggests that the same micromeres at the eight‐cell stage that are specified to generate the larval eyes also form the adult eyes. Direct deletion of the larval eye, including the pigment cell and the corresponding photoreceptor cell, resulted in a lack of shading pigment cells in juveniles and adults, demonstrating that this structure does not regenerate. However, a sensory photoreceptor cell was present in juveniles following direct larval eye deletions, indicating that larval and adult photoreceptors are separate cells. We propose that the formation of the adult eye in juveniles of C. teleta requires the presence of the pigment cell of the larval eye, but the adult photoreceptor is either recruited from adjacent neural tissue or arises de novo after metamorphosis. These results are different from the development and spatial orientation of larval and adult eyes found in other polychaetes, in which two scenarios have been proposed: larval eyes persist and function as adult eyes; or, distinct pigmented adult eyes begin developing separately from larval eyes prior to metamorphosis.  相似文献   

9.

Background

The retention of ancestral juvenile characters by adult stages of descendants is called paedomorphosis. However, this process can mislead phylogenetic analyses based on morphological data, even in combination with molecular data, because the assessment if a character is primary absent or secondary lost is difficult. Thus, the detection of incongruence between morphological and molecular data is necessary to investigate the reliability of simultaneous analyses. Different methods have been proposed to detect data congruence or incongruence. Five of them (PABA, PBS, NDI, LILD, DRI) are used herein to assess incongruence between morphological and molecular data in a case study addressing salamander phylogeny, which comprises several supposedly paedomorphic taxa. Therefore, previously published data sets were compiled herein. Furthermore, two strategies ameliorating effects of paedomorphosis on phylogenetic studies were tested herein using a statistical rigor. Additionally, efficiency of the different methods to assess incongruence was analyzed using this empirical data set. Finally, a test statistic is presented for all these methods except DRI.

Results

The addition of morphological data to molecular data results in both different positions of three of the four paedomorphic taxa and strong incongruence, but treating the morphological data using different strategies ameliorating the negative impact of paedomorphosis revokes these changes and minimizes the conflict. Of these strategies the strategy to just exclude paedomorphic character traits seem to be most beneficial. Of the three molecular partitions analyzed herein the RAG1 partition seems to be the most suitable to resolve deep salamander phylogeny. The rRNA and mtDNA partition are either too conserved or too variable, respectively. Of the different methods to detect incongruence, the NDI and PABA approaches are more conservative in the indication of incongruence than LILD and PBS.

Conclusion

Paedomorphosis induces strong conflicts and can mislead the phylogenetic analyses even in combined analyses. However, different strategies are efficiently minimizing these problems. Though the exploration of different methods to detect incongruence is preferable NDI and PABA are more conservative than the others and NDI is computational less extensive than PABA.  相似文献   

10.
The study of ontogeny as an integral part of understanding the pattern of evolution dates back over 200 years, but only recently have ontogenetic data been explicitly incorporated into phylogenetic analyses. Pancrustaceans undergo radical ontogenetic changes. The spectacular upper Cambrian “Orsten” fauna preserves phosphatized fossil larvae, including putative crown‐group pancrustaceans with amazingly complete developmental sequences. The putative presence and nature of adult stages remains a source of debate, causing spurious placements in a traditional morphological analysis. We introduce a new coding method where each semaphoront (discrete larval or adult stage) is considered an operational taxonomic unit. This avoids a priori assumptions of heterochrony. Characters and their states are defined to identify changes in morphology throughout ontogeny. Phylogenetic analyses of semaphoronts produced possible relationships of each Orsten fossil to the crown‐group clade expected from morphology shared with extant larvae. Bredocaris is a member of the stem lineage of Thecostraca or (Thecostraca + Copepoda), and Yicaris and Rehbachiella are probably members of the stem lineage of Cephalocarida. These placements rely directly on comparisons between extant and fossil larval character states. The position of Phosphatocopina remains unresolved. This method may have broader applications to other phylogenetic problems which may rely on ontogenetically variable homology statements.  相似文献   

11.
When the larval tissue is exposed to the hormonal milieu lacking juvenile hormone, adult characters appear directly omitting the pupal stage in some insects but not in others. In Samia cynthia ricini, a species belonging to the latter group, a possible omission of pupal characters was tested by previously untried experiments. Firstly, the possibility that the larval epidermis of only some stages is capable of responding so as to omit to secrete the pupal cuticle was tested. Pieces of larval integument taken from various developmental stages were implanted into developing (pharate) adults. None of these failed to secrete the pupal cuticle. Secondly, pieces of larval integument were first implanted into brainless pupae and left there for a month to eliminate the effect of a trace of juvenile hormone which might have been carried over by the implants. They were then caused to develop, and they again secreted pupal cuticle. It is concluded that the larval epidermis cannot omit secreting pupal cuticle in this species.  相似文献   

12.
Temnospondyls, possible relatives of extant amphibians and crudely similar to recent salamanders, are known from larval, neotenic and metamorphosed stages. Here, ontogenetic data of various temnospondyl taxa are analysed in order to recognize metamorphosis. Here, metamorphosis is strictly defined as a shift from an aquatic to a terrestrial existence. Following a check-list of criteria, the most likely metamorphosis-induced changes are proved in three temnospondyl lineages: eryopids, zatrachydids and dissorophoids. In a few other, unrelated taxa, terrestrial adults are known but no larval or metamorphosing forms. The distribution of metamorphosis among the Temnospondyli does not strictly correlate with phylogeny, which highlights the widespread occurrence of neoteny. In each group, characteristic patterns of metamorphosis are described and compared. Among temnospondyls, dissorophoids had the most intensive type of metamorphosis, characterized by a condensed ontogeny and a relatively small body size. The result was a distinct transformed morphotype with far-reaching terrestrial adaptations.  相似文献   

13.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

14.
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding--lecithotrophic--larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.  相似文献   

15.
For many animals, the availability and provision of dietary resources can vary markedly between juvenile and adult stages, often leading to a temporal separation of nutrient acquisition and use. Juvenile developmental programs are likely limited by the energetic demands of many adult tissues and processes with early developmental origins. Enhanced dietary quality in the adult stage may, therefore, alter selection on life history and growth patterns in juvenile stages. Heliconius are unique among butterflies in actively collecting and digesting pollen grains, which provide an adult source of essential amino acids. The origin of pollen feeding has therefore previously been hypothesized to lift constraints on larval growth rates, allowing Heliconius to spend less time as larvae when they are most vulnerable to predation. By measuring larval and pupal life‐history traits across three pollen‐feeding and three nonpollen‐feeding Heliconiini, we provide the first test of this hypothesis. Although we detect significant interspecific variation in larval and pupal development, we do not find any consistent shift associated with pollen feeding. We discuss how this result may fit with patterns of nitrogen allocation, the benefits of nitrogenous stores, and developmental limitations on growth. Our results provide a framework for studies aiming to link innovations in adult Heliconius to altered selection regimes and developmental programs in early life stages.  相似文献   

16.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

17.
The lifespan of herbivorous Rana pipiens larvae is ~3 months, while that of carnivorous Ceratophrys ornata larvae is only about 2 weeks. During metamorphic climax, the larval gut shortens dramatically, especially in R. pipiens, and its luminal epithelium is replaced by adult‐type epithelium. To determine when programmed cell death occurs during the metamorphic restructuring of the gut, we prepared cross‐sections of the stomach, small intestine, and large intestine from representative larval stages and from juvenile frogs of both species. The sections were incubated with monoclonal antibody against active caspase‐3, one of the key enzymes in the apoptotic cascade. We observed apoptosis in some luminal epithelial cells in each of the three regions of the larval gastrointestinal tract of both species. However, apoptotic cells appeared earlier in larval stages of R. pipiens than C. ornata and few were seen in juvenile frogs of either species. The results demonstrate the occurrence of apoptosis in the metamorphic remodeling of the gut of both R. pipiens larvae and C. ornata larvae. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime-averaged information that can be considered by managers. We address this limitation by combining age-specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum-tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1,500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine-scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish.  相似文献   

19.
One of the longstanding questions in phylogenetic systematics is how to address incongruence among phylogenies obtained from multiple markers and how to determine the causes. This study presents a detailed analysis of incongruent patterns between plastid and ITS/ETS phylogenies of Tribe Senecioneae (Asteraceae). This approach revealed widespread and strongly supported incongruence, which complicates conclusions about evolutionary relationships at all taxonomic levels. The patterns of incongruence that were resolved suggest that incomplete lineage sorting (ILS) and/or ancient hybridization are the most likely explanations. These phenomena are, however, extremely difficult to distinguish because they may result in similar phylogenetic patterns. We present a novel approach to evaluate whether ILS can be excluded as an explanation for incongruent patterns. This coalescence-based method uses molecular dating estimates of the duration of the putative ILS events to determine if invoking ILS as an explanation for incongruence would require unrealistically high effective population sizes. For four of the incongruent patterns identified within the Senecioneae, this approach indicates that ILS cannot be invoked to explain the observed incongruence. Alternatively, these patterns are more realistically explained by ancient hybridization events.  相似文献   

20.
Treatment of larval Plodia interpunctella with sublethal doses of juvenile hormone repressed mating of the adults. This repression did not result from a reduced content of sex pheromone of females, but it may have been caused in part by reduced calling behaviour and abnormal antennae. An absence of juvenile hormone at the end of larval life is necessary for the development of normal reproductive behaviour of the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号