首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of dibenz[a,c]anthracene 10,11-oxide is described. The oxide was unstable and was rapidly decomposed with cold mineral acid into a mixture of 10- and 11- hydroxydibenz[a,c]anthracene. The oxide was converted by rat liver microsomal preparations and homogenates into a product that is probably 10,11-dihydro-10,11-dihydroxydibenz[a,c]anthracene and which was identical with the metabolite formed when dibenz[a,c]anthracene was metabolized by rat liver homogenates. The oxide did not react either chemically or enzymically with GSH. 10,11-Dihydrodibenz[a,c]anthracene and 10,11-dihydrodibenz[a,c]anthracene 12,13-oxide were both metabolized by rat liver preparations into trans-10,11,12,13-tetrahydro-10,11-dihydroxydibenz[a,c] anthracene and the oxide was converted chemically into this dihydroxy compound, and it reacted chemically but not enzymically with GSH. In the alkylation of 4-(p-nitrobenzyl)pyridine, the ;K-region' epoxide, dibenz[a,h]anthracene 5,6-oxide, was more active than either dibenz[a,c]anthracene 10,11-oxide or 10,11-dihydrobenz[a,c]anthracene 12,13-oxide.  相似文献   

2.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

3.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

4.
1. 7- and 12-Methylbenz[a]anthracene were converted by rat-liver homogenates into the corresponding hydroxymethyl derivatives, products that are probably the 8,9-dihydro-8,9-dihydroxy and the 5,6-dihydro-5,6-dihydroxy derivatives, and a number of phenolic products. 2. Both hydrocarbons were converted into glutathione conjugates; that from 7-methylbenz[a]anthracene was also formed, together with 5,6-dihydro-5,6-dihydroxy- and 5-hydroxy-benz[a]anthracene, from 5,6-epoxy-5,6-dihydro-7-methylbenz[a]anthracene. 3. 7- and 12-Hydroxymethyl-benz[a]anthracene were converted into products that are probably 8,9-dihydro-8,9-dihydroxy derivatives, and into phenols. 4. The preparation of a number of derivatives of the hydrocarbons is described. 5. The oxidation of the hydrocarbons with lead tetra-acetate was investigated.  相似文献   

5.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

6.
The principal oxidative metabolites formed from benz[a]anthracene (BA) by the rat liver microsomal monooxygenase system are the 5,6- and 8,9-arene oxides. In order to determine the enantiomeric composition and absolute configuration of these metabolically formed arene oxides, an HPLC procedure has been developed to separate the six isomeric glutathione conjugates obtained synthetically from the individual enantiomeric arene oxides. Both (+)- and (?)-BA 5,6-oxide gave the two possible positional isomers, but only one positional isomer was formed in each case from (+)- and (?)-BA 8,9-oxide. When [14C]-BA was incubated with a highly purified and reconstituted monooxygenase system containing cytochrome P-450c, and glutathione was allowed to react with the arene oxides formed, radio-active adducts were formed predominantly (>97%) from the (+)-(5S,6R) and (+)-(8R,9S) enantiomers. The present results are in accord with theoretical predictions of the steric requirements of the catalytic binding site of cytochrome P-450c.  相似文献   

7.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

8.
Summary Six strains of fungi grown on Sabouraud dextrose broth in the presence of 7,12-dimethylbenz[a]anthracene (DMBA) were surveyed for their ability to metabolize DMBA. Experiments with [14C]DMBA indicated that the extent of formation of organic-soluble metabolites ranged from 6 to 28% after 5 days of incubation, depending on the organism tested. The yields of water-soluble metabolites also varied, and ranged from 1 to 33% after 5 days.Cunninghamella elegans ATCC 36112 andSyncephalastrum racemosum UT-70 exhibited the highest DMBA-metabolizing activity among the organisms surveyed.S. racemosum metabolized DMBA primarily to 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA)_ and 7,12-dihydroxymethylbenz[a]anthracene (7,12-diOHMBA). Minor metabolites included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols, and glucuronide and sulfate conjugates of phenolic derivatives of DMBA. In contrast, the major DMBA metabolites produced byC. elegans were water-soluble. The predominant organic-soluble metabolites produced byC. elegans included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols. DMBA-trans-3,4-dihydrodiol was also detected. Circular dichroism spectral analysis revealed that the major enantiomer of the 7-OHM-12-MBA-trans-8,9-dihydrodiol formed by each organism has anS,S absolute configuration, while the major enantiomers of the 5,6-, 10,11- and 3,4-dihydrodiols had anR,R configuration. The mutagenic activity of extracts fromS. racemosum exposed to DMBA were determined inSalmonella typhimurium TA98. The mutagenicity of DMBA decreased by 36% over a period of 5 days as 33% of the compound was metabolized. Comparison of these results with previously reported results in mammalian systems suggests that there are similarities and differences between the fungal and mammalian oxidation of DMBA and that the overall balance of fungal metabolism is towards a detoxification rather than a bioactivation pathway.  相似文献   

9.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

10.
Polar, ethyl acetate soluble metabolites formed in incubations of dibenz[a,c]-anthracene (DB[a,c]A), dibenz[a,h]anthracene (DB[a,h]A) and the related DB[a,h]A 3,4-diol and dibenz[a,j]anthracene (DB[a,j]A) with 3-methylcholanthrene (3-MC)-induced rat liver microsomal preparations have been separated by HPLC and examined using fluorescence, UV and NMR spectroscopy. Metabolites with spectral properties consistant with their identification as the 3,4:8,9-bis-diol of DB[a,j]A and a 1,2,3,4,12,13-hexol derived from DB[a,c]A were found. DB[a,h]A was metabolized to three polar products identified as the 3,4:10,11-bis-diol and the related 1,2,3,4,8,9- and 1,2,3,4,10,11-hexols, which were also formed, together with the related 1,2,3,4-tetrol, from the DB[a,h]A 3,4-diol. The possible role of bis-diols in the metabolic activation of these three dibenzanthracenes is discussed.  相似文献   

11.
By means of glass-capillary-gas chromatography all possible benz[a]anthracene metabolites formed by rat liver microsomes (phenols, dihydrodiols, dihydrodiol enols and tetrahydrotetrols) can be separated. Mass spectra of their trimethylsilyl ethers show intense molecule ions and, in most cases, characteristic fragments. K-Region diols and their secondary oxidation products can be recognized by the ratio (m/e 147) (m/e 191) greater than 1, whereas the ratio is inverse in all other dihydrodiol trimethylsilyl ethers investigated. With the exception of 1,2-dihydrobenz[a]anthracene-1,2,3-triol all vicinal dihydrodiol enols investigated exhibit an intense elimination of the fragment CH = CH-OSiMe3 according to m/e 379. The conformation of vicinal tetrahydrobenz[a]anthracenetetrols possibly can be distinguished by the intensity of m/e 380 (M - 240) since only in those possessing two or more subsequent Me3SiO groups in the same conformation intense elimination of Me3Si-O-CH = CH-O-SiMe3 is observed. Retention times and mass spectrometric data of a series of synthetic benz[a]anthracene derivatives are presented as a base for the identification of benz[a]anthracene metabolites in biological systems.  相似文献   

12.
The principal nucleoside-hydrocarbon adducts present in hydrolysates of RNA and DNA isolated from hamster embryo cells treated with benz[a]anthracene (BA) were examined by chromatography on Sephadex LH 20 and by high pressure liquid chromatography (HPLC) on Spherisorb 5 ODS. The results extend the previous finding that a non-'bay-region' diol-epoxide, anti-BA-8,9-diol 10,11-oxide (r-8,t-9-dihydroxy-t-10,11-oxy-8,9,10,11-tetrahydrobenz[a] anthracene) is involved in the binding of BA to cellular nucleic acids and show that this diol-epoxide most probably reacts with guanosine and adenosine in RNA and with deoxyguanosine in DNA. The results also show that a 'bay-region' diol-epoxide anti-BA-3,4-diol 1,2-oxide (t-3,-4-dihydroxy-t-1,2-oxy-1,2,3,4-tetrahydrobenz[a]anthracene, which is thought to be involved in the binding of benz[a]anthracene, which is thought to be involved in the binding of benz[a]anthracene to DNA in some situations, reacts mainly with deoxyguanosine.  相似文献   

13.
A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter−1 benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter−1) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(−)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended.  相似文献   

14.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

15.
The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.  相似文献   

16.
Cultures of Mycobacterium vanbaalenii strain PYR-1 grown in mineral salts medium and nutrients in the presence of benz[a]anthracene metabolized 15% of the added benz[a]anthracene after 12days of incubation. Neutral and acidic ethyl acetate extractable metabolites were isolated and characterized by high performance liquid chromatography (HPLC) and uv–visible absorption, gas chromatography/mass (GC/MS) and nuclear magnetic resonance (NMR) spectral analysis. Trimethylsilylation of the metabolitesfollowed by GC/MS analysis facilitated identification of metabolites. The characterization of metabolites indicated that M. vanbaalenii initiated attack of benz[a]anthracene at the C-1,2-, C-5,6-, C-7,12- and C-10,11-positions to form dihydroxylated and methoxylated intermediates. The major site of enzymatic attack was in the C-10, C-11 positions. Subsequent ortho- and meta-cleavage of each of the aromatic rings led to the accumulation of novel ring-fission metabolites in the medium. The major metabolites identified were 3-hydrobenzo[f]isobenzofuran-1-one (3.2%), 6-hydrofuran[3,4-g]chromene-2,8-dione (1.3%), benzo[g]chromene-2-one (1.7%), naphtho[2,1-g]chromen-10-one (48.1%), 10-hydroxy-11-methoxybenz[a]anthracene (9.3%), and 10,11-dimethoxybenz[a]anthracene (36.4%). Enzymatic attack at the C-7 and C-12 positions resulted in the formation of benz[a]anthracene-7,12-dione, 1-(2-hydroxybenzoyl)-2-naphthoic acid, and 1-benzoyl-2-naphthoic acid. A phenyl-naphthyl metabolite, 3-(2-carboxylphenyl)-2-naphthoic acid, was formed when M. vanbaalenii was incubated with benz[a]anthracene cis-5,6-dihydrodiol, indicating ortho-cleavage of 5,6-dihydroxybenz[a]anthracene. A minor amount of 5,6-dimethoxybenz[a]anthracene was also formed. The data extend and propose novel pathways for the bacterial metabolism of benz[a]anthracene.  相似文献   

17.
The non-K-region benz[a]anthracene (BA) 8,9- and 10,11-epoxides were isolated by normal-phase high-performance liquid chromatography as rat liver microsomal metabolites of BA. The identities of these epoxides were established by ultraviolet and mass spectral analyses and were further validated by the microsomal epoxide hydrolase catalyzed conversion to BA trans-8,9-dihydrodiol and trans-10,11-dihydrodiol, respectively. Circular dichroism spectral analyses of the metabolically formed non-K-region epoxides and dihydrodiols and mass spectral analyses of metabolically formed 18O-labeled non-K-region dihydrodiols and their acid-catalyzed dehydration products indicated that BA (8R,9S)-epoxide and (10S,11R)-epoxide were the predominant enantiomers formed in the metabolism at the 8,9- and 10,11- aromatic double bonds of BA, respectively, by rat liver microsomes. This is the first example demonstrating the direct detection and stereoselective metabolic formation of non-K-region epoxides of a polycyclic aromatic hydrocarbon.  相似文献   

18.
A rapid, continuous, and highly sensitive fluorescence assay is described for the measurement of epoxide hydrase activity. The method is based on the large differences between the fluorescence spectra of certain K-region arene oxides and their corresponding trans-dihydrodiols. Enzymatic hydration of K-region arene oxides of phenanthrene, pyrene, benzo[a]pyrene, and 7,12-dimethylbenzo[a]anthracene was studied. The assay was most sensitive with benzo[a]pyrene-4,5-oxide as substrate. With 10 μm benzo[a]pyrene-4,5-oxide, enzymatic rates of 30 pmol of dihydrodiol/min/mg of protein are three to five times those of the blank without enzyme. The fluorometric method described has been used to study site-directed inhibitors of epoxide hydrase and the stereoselective hydration of racemic arene oxides.  相似文献   

19.
The alkylating properties of pairs of syn- and anti-isomers of 2 diol-epoxides derived from benzo(a)pyrene (BP) and of 1 derived from benz(a)anthracene (BA) have been investigated. Of the anti-diol-epoxides, anti-BP 7,8-diol-9,10-oxide was the most reactive compound towards DNA, towards sodium p-nitrothiophenolate in a non-aqueous solvent system, and towards 4-(p-nitrobenzyl)pyridine in aqueous solution; anti-BP 9,10,-diol-7,8-oxide was of intermediate reactivity and anti-BA 8,9-diol-10,11-oxide was least reactive. The syn-diol-epoxides gave unsatisfactory results with DNA and 4-(p-nitrobenzyl)pyridine because of their rapid solvolysis in aqueous solution, but with sodium p-nitrothiophenolate showed the order of reactivity syn-BP 7,8-diol-9,10-oxide greater than syn-BA 8,9-diol-10,11-oxide greater than syn-BP 9,10-diol-7,8-oxide. The products of the reaction between diol-epoxides and nucleic acids were examined by Sephadex LH-20 chromatography followed by high-pressure liquid chromatography (HPLC) and the diol-epoxides were shown to react principally with the guanosine and adenosine moieties of RNA.  相似文献   

20.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号