首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics of human red blood cell Cl transport have been studied under nonequilibrium conditions to determine whether or not an outward Cl gradient can recruit the transport protein from an inward-facing to an outward-facing configuration. Three kinds of evidence are consistent with this outward recruitment. First, the initial net Cl efflux into a Cl-free phosphate medium is independent of the intracellular Cl concentration in the range 20-170 mM. Second, an outward Cl gradient strongly enhances the inhibitory potency of DNDS (4,4'-dinitro-2,2'-stilbene disulfonate), which suggests that DNDS binds primarily to outward-facing states. Finally, we have estimated the number of Cl ions transported during the putative outward recruitment. Resealed red cell ghosts containing only 70 muM 36Cl were resuspended at 0 degrees C in a Cl-free, HCO3-free Na2SO4 medium. In the first 10 s, or approximately 10(6) Cl ions per ghost, followed by a much slower further loss of Cl. The rapid loss of 10(6) Cl ions per ghost, which is abolished by pretreatment with DIDS (4,4'-diisothiocyano-2,2'-stilbene disulfonate), appears to represent the Cl that is transported during the first half-turnover of the transport cycle. These data are strong evidence that the influx and efflux events in the catalytic cycle for anion transport do not take place simultaneously, and that the stoichiometry of the transport cycle is close to one pair of anions exchanged per band 3 monomer.  相似文献   

2.
When human erythrocytes are suspended in low-Cl- media (with sucrose replacing Cl-), there is a large increase in both the net efflux and permeability of K+. A substantial portion (greater than 70% with Cl- less than 12.5 mM) of this K+ efflux is inhibited by the anion exchange inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). This inhibition cannot be explained as an effect of DIDS on net Cl- permeability (Pcl) and membrane potential, but rather represents a direct effect on the K+ permeability. When cells are reacted with DIDS for different times, the inhibition of K+ efflux parallels that of Cl- exchange, which strongly indicates that the band 3 anion exchange protein (capnophorin) mediates the net K+ flux. Since a noncompetitive inhibitor of anion exchange, niflumic acid, has no effect on net K+ efflux, the net K+ flow does not seem to involve the band 3 conformational change that mediates anion exchange. The data suggest that in low-Cl- media, the anion selectivity of capnophorin decreases so that it can act as a very low-conductivity channel for cations. Na+ and Rb+, as well as K+, can utilize this pathway.  相似文献   

3.
Tracer anion exchange flux measurements have been carried out in human red blood cells with the membrane potential clamped at various values with gramicidin. The goal of the study was to determine the effect of membrane potential on the anion translocation and binding events in the catalytic cycle for exchange. The conditions were arranged such that most of the transporters were recruited into the same configuration (inward-facing or outward-facing, depending on the direction of the Cl- gradient). We found that the membrane potential has no detectable effect on the anion translocation event, measured as 36Cl(-)-Cl- or 36Cl(-)-HCO3- exchange. The lack of effect of potential is in agreement with previous studies on red cells and is different from the behavior of the mouse erythroid band 3 gene expressed in frog oocytes (Grygorczyk, R., W. Schwarz, and H. Passow. 1987. J. Membr. Biol. 99:127-136). A negative potential decreases the potency of extracellular SO4= as an inhibitor of either Cl- or HCO3- influx. Because of the potential-dependent inhibition by SO4=, conditions could be found in which a negative intracellular potential actually accelerates 36Cl- influx. This effect is observed only in media containing multivalent anions. The simplest interpretation of the effect is that the negative potential lowers the inhibitory potency of the multivalent anion by lowering its local concentration near the transport site. The magnitude of the effect is consistent with the idea that the anions move through 10-15% of the transmembrane potential between the extracellular medium and the outward-facing transport site. In contrast to its effect on extracellular substrate binding, there is no detectable effect of membrane potential on the competition between intracellular Cl- and SO4= for transport sites. The lack of effect of potential on intracellular substrate binding suggests that the access pathway leading to the inward-facing transport site is of lower electrical resistance than that leading to the extracellular substrate site.  相似文献   

4.
Band 3 catalyzes the one-for-one exchange of monovalent anions across the red cell membrane. At least two anion binding sites have been postulated to exist on the transport unit: 1) a transport site that has been observed by saturation kinetics and by 35 Cl NMR studies of chloride binding, and 2) a 35Cl NMR-invisible inhibitory site that has been proposed to explain the inhibition of anion exchange at large anion concentrations. A number of independent studies have indicated that the transport site is alternately exposed to different sides of the membrane during the transport cycle. Yet the role, if any, of the postulated inhibitory site in the transport cycle is not known. Here it is shown that: 1) when the [Cl-], [Br-], or pH is varied, the band 3 transport sites on both sides of the membrane behave like a homogeneous population of simple anion binding sites in 35Cl NMR experiments, and 2) when the [Cl-] is varied, the outward-facing transport site behaves like a simple anion binding site. These results indicate that the postulated inhibitory site has no effect on chloride binding to the transport site. Instead, the results are quantitatively consistent with the ping-pong model (Gunn, R. B., and Fr?lich, O. (1979) J. Gen. Physiol. 74, 351-374), which states that the transport site is the only site involved in the transport cycle. Expressions are derived for the macroscopically observed characteristics of a ping-pong transporter: these characteristics are shown to be weighted averages of the microscopic properties of the inward- and outward-facing conformations of the transport site. In addition to supporting the simplicity of the transport mechanism, the high pH titration curve for chloride binding to the transport site provides insight into the structure of the site. The macroscopically observed pKA = 11.1 +/- 0.1 in the leaky ghost system indicates that an arginine must provide the essential positive charge in the inward- or outward-facing conformation of the transport site, or in both conformations.  相似文献   

5.
6.
After functional expression of mouse erythroid band 3 by cRNA microinjection into Xenopus oocytes, 36Cl- efflux is irreversibly inhibited by H2DIDS. When a cRNA is injected that is derived from a cDNA in which the nucleotides encoding for lysine-558 were replaced by nucleotides encoding for asparagine, transport and inhibition of transport by H2DIDS still occur. However, when measured under conditions where no intramolecular crosslinking takes place the inhibition by H2DIDS is no longer irreversible. This indicates that thiourea bond formation between H2DIDS and band 3 takes place at Lys-558.  相似文献   

7.
In human keratinocytes, mediated transport of Cl- was found to occur mainly by two mechanisms: an anion exchange and an electrically conductive pathway. The contribution of the anion exchange, which accounted for about 50% of overall Cl- efflux, was assessed either by its sensitivity to inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and by means of Cl- substitution experiments. The anion exchange exhibited a saturation behaviour over the range 10-135 mM Cl-; Cl- was more efficient than HCO3-, Br- and NO3- in increasing Cl- efflux rate, whereas SO4(2-) and I- inhibited Cl- efflux. The electrically conductive Cl- pathway, which accounted for about 40% of total Cl- efflux, was inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and was at least partially sensitive to variation of the plasma membrane potential. The Cl- channel was insensitive to elevation in the intracellular concentration of either cyclic AMP and calcium ions. Indomethacin, an inhibitor of the cyclooxygenase, failed to reduce Cl- efflux, whereas nordihydroguaiaretic acid (NDGA), an inhibitor of the lipoxygenase, induced 50% inhibition of Cl- efflux. These results support the conclusion that endogenous production of lipoxygenase-derived arachidonic acid metabolite(s) might be responsible for high basal Cl- permeability in human keratinocytes.  相似文献   

8.
Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors   总被引:4,自引:0,他引:4  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7888-7894
The band 3 protein of red cells is a transmembrane ion transport protein that catalyzes the one-for-one exchange of anions across the cell membrane. 35Cl NMR studies of Cl- binding to the transport sites of band 3 show that inhibitors of anion transport can be grouped into three classes: (1) transport site inhibitors (examined in this paper), (2) channel-blocking inhibitors (examined in the second of three papers in this issue), and (3) translocation inhibitors (examined in the third of three papers in this issue). Transport site inhibitors fully or partially reduce the affinity of Cl- for the transport site. The dianion 4,4'-di-nitrostilbene-2,2'-disulfonate (DNDS) and the arginine-specific reagent phenylglyoxal (PG) each completely eliminate the transport site 35Cl NMR line broadening, and each compete with Cl- for binding. These results indicate that DNDS and PG share a common inhibitory mechanism involving occupation of the transport site: one of the DNDS negative charges occupies the site, while PG covalently modifies one or more essential positive charges in the site. In contrast, 35Cl NMR line broadening experiments suggest that 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) leaves the transport site partially intact so that the affinity of Cl- for the site is reduced but not destroyed. This result is consistent with a picture in which DIDS binds near the transport site and partially occupies the site.  相似文献   

9.
Slices of rat cerebral cortex, preloaded with [14C]gamma-aminobutyric acid (GABA) and either [3H]5-hydroxytryptamine (5-HT) or [3H]noradrenaline, were superfused with media in which varying concentrations of Cl- had been replaced with other monovalent anions. Rapid reduction of [Cl-], by superfusion with media containing instead the impermeant anions propionate, isethionate, gluconate, or methyl sulphate, caused increases in the efflux of tritiated biogenic amines, but the increase in that of [14C]-GABA was not significant. The increased efflux of [3H]5-HT evoked by superfusion with low Cl- levels when propionate was the replacement anion, was transient and was linearly related to the log[Cl-]-1. It was not affected by removal of Ca2+ or by addition of 10 mM Mg2+ and was delayed but not abolished by tetrodotoxin. The low Cl(-)-evoked efflux of [3H]5-HT was not affected by pretreatment with neuronal reuptake blockers but was inhibited by picrotoxin, strychnine, and 4-acetamido-4-isothiocyanostilbene-2,2-disulphonic acid and was enhanced by glycine. Muscimol and GABA were without effect. These observations are taken to indicate that the efflux of biogenic amines is brought about by terminal depolarisation due to outward movement of Cl- in low chloride-containing media. They are of relevance to other physiological and pharmacological studies in which anion concentrations are manipulated and suggest that the anion-evoked release phenomenon may provide a model for the analysis of Cl(-)-dependent mechanisms in nerve terminals.  相似文献   

10.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

11.
External N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (Eo or EClo ) form. Since NAP-taurine prevents the conformational change from EClo to ECli , it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H2DIDS (4,4'-diisothiocyano-1,2- diphenylethane -2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H2DIDS reveals that the transport system is intrinsically asymmetric, such that when Cli = Clo, most of the unloaded transport sites face the cytoplasmic side of the membrane.  相似文献   

12.
The conductive (net) anion permeability of human red blood cells was determined from net KCl or K2SO4 effluxes into low K+ media at high valinomycin concentrations, conditions under which the salt efflux is limited primarily by the net anion permeability. Disulfonic stilbenes, inhibitors of anion exchange, also inhibited KCl or K2SO4 efflux under these conditions, but were less effective at lower valinomycin concentrations where K+ permeability is the primary limiting factor. Various concentrations of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) had similar inhibitory effects on net and exchange sulfate fluxes, both of which were almost completely DIDS sensitive. In the case of Cl-, a high correlation was also found between inhibition of net and exchange fluxes, but in this case about 35% of the net flux was insensitive to DIDS. The net and exchange transport processes differed strikingly in their anion selectivity. Net chloride permeability was only four times as high as net sulfate permeability, whereas chloride exchange is over 10,000 times faster than sulfate exchange. Net OH-permeability, determined by an analogous method, was over four orders of magnitude larger than that of Cl-, but was also sensitive to DIDS. These data and others are discussed in terms of the possibility that a common element may be involved in both net and exchange anion transport.  相似文献   

13.
The ping-pong model for the red cell anion exchange system postulates that the transport protein band 3 can exist in two different conformations, one in which the transport site faces the cytoplasm (Ei) and another in which it faces the outside medium (Eo). This model predicts that an increase in intracellular chloride should increase the fraction of sites in the outward-facing, unloaded form (Eo). Since external H2DIDS is a competitive inhibitor of chloride exchange that does not cross the membrane, it must bind only to the Eo form. Thus, an increase in Eo should cause an increase in H2DIDS inhibition. When intracellular chloride was increased at constant extracellular chloride, the inhibitory potency of H2DIDS rose, as predicted by the ping-pong model. This increase was not due to the concomitant changes in intracellular pH or membrane potential. When the chloride gradient was reversed, the inhibitory potency of H2DIDS decreased, again in qualitative agreement with the ping-pong model. These data provide support for the ping-pong model and also demonstrate that chloride gradients can be used to change the orientation of the transport protein.  相似文献   

14.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

15.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

16.
It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahé, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process, this inhibition explains the Cl requirement for Na entry. The lack of stimulation of cell swelling by bicarbonate is explained by the fact that the rate of anion exchange in a CO2-free medium (Cl-/OH- exchange) is roughly equivalent to that of Na+/H+ exchange and thus in practice is not limiting to the net influx of NaCl through the two exchangers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
One of the modes of action of the red blood cell anion transport protein is the electrically silent net exchange of 1 Cl- for 1 SO4= and 1 H+. Net SO4(=)-Cl- exchange is accelerated by low pH or by conversion of the side chain of glutamate 681 into an alcohol by treatment of intact cells with Woodward's reagent K (WRK) and BH4-. The studies described here were performed to characterize the electrical properties of net SO4(=)-Cl- exchange in cells modified with WRK/BH4-. The SO4= conductance measured in 100 mM SO4= medium is smaller in modified cells than in control cells. However, the efflux of [35S] SO4= into a 150-mM KCl medium is 80-fold larger in modified cells than in control cells and is inhibited 99% by 10 microM H2DIDS. No detectable H+ flux is associated with SO4(=)-Cl- exchange in modified cells. In the presence of gramicidin to increase the cation permeability, the stoichiometry of SO4(=)-Cl- exchange is not distinguishable from 1:1. In modified cells loaded with SO4=, the valinomycin-mediated efflux of 86Rb+ into an Na- gluconate medium is immediately stimulated by the addition of 5 mM extracellular Cl-. Therefore, SO4(=)-Cl- exchange in modified cells causes an outward movement of negative charge, as expected for an obligatory 1:1 SO4(=)-Cl- exchange. This is the first example of an obligatory, electrogenic exchange process in band 3 and demonstrates that the coupling between influx and efflux does not require that the overall exchange be electrically neutral. The effects of membrane potential on SO4(=)-SO4= exchange and SO4(=)-Cl- exchange in modified cells are consistent with a model in which nearly a full net positive charge moves inward through the transmembrane field during the inward Cl- translocation event, and a small net negative charge moves with SO4= during the SO4= translocation event. This result suggests that, in normal cells, the negative charge on Glu 681 traverses most of the transmembrane electric field, accompanied by Cl- and the equivalent of two protein-bound positive charges.  相似文献   

18.
1. The efflux of radiolabelled sulphate from lactating rat mammary tissue slices has been studied. Sulphate efflux was found to be time- and temperature-dependent. 2. 4,4'-Diisothiocyanostilbene-2,2'-disulphonate (DIDS) inhibited a portion of sulphate release, whereas bumetanide was without effect. 3. The anions chloride, iodide and sulphate trans-stimulated sulphate efflux when added to the incubation medium. The increase in the efflux rate of sulphate found with chloride could be markedly inhibited by DIDS. Thiocyanate, unlike the other anions tested, only had a small effect. 4. The results strongly suggest that there is an anion exchange mechanism in the mammary gland which can mediate the transport of sulphate. This transporter may be important for the metabolism of sulphate by the mammary gland and may also help determine milk anion concentrations.  相似文献   

19.
This paper describes characteristics of the transport of oxalate across the human erythrocyte membrane. Treatment of cells with low concentrations of H2DIDS (4,4'-diisothiocyanatostilbene-2,2'- disulfonate) inhibits Cl(-)-Cl- and oxalate-oxalate exchange to the same extent, suggesting that band 3 is the major transport pathway for oxalate. The kinetics of oxalate and Cl- self-exchange fluxes indicate that the two ions compete for a common transport site; the apparent Cl- affinity is two to three times higher than that of oxalate. The net exchange of oxalate for Cl-, in either direction, is accompanied by a flux of H+ with oxalate, as is also true of net Cl(-)-SO4(2-) exchange. The transport of oxalate, however, is much faster than that of SO4(2-) or other divalent anions. Oxalate influx into Cl(-)-containing cells has an extracellular pH optimum of approximately 5.5 at 0 degrees C. At extracellular pH below 5.5 (neutral intracellular pH), net Cl(-)- oxalate exchange is nearly as fast as Cl(-)-Cl- exchange. The rapid Cl(- )-oxalate exchange at acid extracellular pH is not likely to be a consequence of Cl- exchange for monovalent oxalate (HOOC-COO-; pKa = 4.2) because monocarboxylates of similar structure exchange for Cl- much more slowly than does oxalate. The activation energy of Cl(-)- oxalate exchange is about 35 kCal/mol at temperatures between 0 and 15 degrees C; the rapid oxalate influx is therefore not a consequence of a low activation energy. The protein phosphatase inhibitor okadaic acid has no detectable effect on oxalate self-exchange, in contrast to a recent finding in another laboratory (Baggio, B., L. Bordin, G. Clari, G. Gambaro, and V. Moret. 1993. Biochim. Biophys. Acta. 1148:157-160.); our data provide no evidence for physiological regulation of anion exchange in red cells.  相似文献   

20.
Niflumic acid is a noncompetitive inhibitor of chloride exchange, which binds to a site different from the transport or modifier sites. When the internal Cl- concentration is raised, at constant extracellular Cl- , the inhibitory potency of niflumic acid increases. This effect cannot be attributed to changes in membrane potential, but rather it suggests that niflumic acid binds to the anion exchange protein band 3 only when the transport site faces outward. When the chloride gradient is reversed, with Clo greater than Cli , the inhibitory potency of niflumic acid decreases greatly, which indicates that the affinity of niflumic acid for band 3 with the transport site facing inward is almost 50 times less than when the transport site faces outward. Experiments in which Cli = Clo show no significant change in the inhibition by niflumic acid when Cl- is lowered from 150 to 10 mM. These data suggest that the intrinsic dissociation constants for Cl- at the two sides of the membrane are nearly equal. Thus, the chloride- loaded transport sites have an asymmetric orientation like that of the unloaded transport sites, with approximately 15 times more sites facing the inside than the outside. The asymmetry reflects an approximately 1.5 kcal/mol free energy difference between the inward-facing and outward-facing chloride-loaded forms of band 3. High concentrations of chloride (with Cli = Clo), which partially saturate the modifier site, have no effect on niflumic acid inhibition, which indicates that chloride binds equally well to the modifier site regardless of the orientation of the transport site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号