首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to know if the beta-galactosidase of the rat epididymal fluid, as other secreted acid hydrolases, carries a marker in its molecule, we studied the binding of this enzyme to cellular membranes of the epididymal tissue. The binding, like that mediated by the phosphomannosyl receptor, was saturable, did not require calcium, had a Kd in the nM range and was inhibited by phosphatase or metaperiodate treatment of the enzyme. However fructose 6-phosphate derivates were more effective competitive inhibitors than mannose 6-phosphate. The binding capacity of the membranes were extractable with Triton X-100 and incorporable into liposomes. Trypsin inhibited the binding capacity of Triton extracts but it did not affect the affinity of intact cellular membranes for beta-galactosidase. The results suggest that a phosphorylated carbohydrate of the enzyme is bound by a recognizing site of the cellular membranes different from the phosphomannosyl receptor.  相似文献   

2.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

3.
The receptor for somatostatin present in rat pancreatic plasma membranes was characterized by affinity labeling with [125I-Tyr11]somatostatin utilizing three different heterobifunctional cross-linking agents: N-5-azido-2-nitrobenzoyloxy-succinimide, N-succinimidyl 6-(4-azido 2'-nitrophenylamine)hexanoate, and N-hydroxysuccinimidyl 4-azido-benzoate. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed a broad band of Mr = 92,000 when any of the three cross-linkers was used; N-succinimidyl 6-(4-azido 2'-nitrophenylamine), however, was most efficient. Labeling of the Mr = 92,000 protein band was not affected by reducing agents but was sensitive to somatostatin and guanine nucleotides, particularly GTP gamma S, at concentrations which reduced binding to the receptor. The affinity-labeled protein could be solubilized completely with Zwittergent 3-12, partially with Triton X-100 and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and poorly with Zwittergent 3-08 and digitonin. When exposed to agarose-coupled lectins, the detergent solubilized, labeled Mr = 92,000 protein was completely adsorbed to wheat germ agglutinin, partially to ricin communis II, and not at all to concanavalin A or lotus or lentil lectin. The Mr = 92,000 protein bound to wheat germ agglutinin-agarose was not eluted by N-acetylglucosamine but was by triacetylchitotriose, providing a considerable purification of the somatostatin receptor. These data allow us to conclude that the somatostatin receptor is a monomeric glycoprotein with an Mr = 90,000 binding subunit which probably contains a polymeric arrangement of N-acetylglucosamine residues.  相似文献   

4.
Insulin receptor was purified 10,000-fold from cultured mouse 3T3-L1 adipocytes in 35% overall yield. The specific activities of 125I-insulin binding and autophosphorylation increased in parallel, following the initial Triton X-100 extraction of membranes. The isolation protocol, performed entirely at pH 8.45, entailed adsorption by avidin-Sepharose CL-4B of a complex formed between Triton X-100-solubilized insulin receptor and N alpha B1-(biotinyl-epsilon-aminocaproyl)insulin, and the specific elution of the complex with biotin. The avidin-Sepharose CL-4B was a partially denatured preparation, showing estimated dissociation constants of 0.2 microM for biotin and approximately 1 microM for the bifunctional ligand at, pH 7, 4 degrees C. The bifunctional ligand was characterized by 70% competency in binding to avidin, 100% competency in binding to solubilized insulin receptor, full stimulation of autophosphorylation of the isolated receptor, and maximal stimulation of hexose uptake by intact 3T3-L1 adipocytes. The insulin binding properties of the insulin receptor were uniform throughout this purification procedure. At pH 8.45, 4 degrees C, an average Kd = 0.72 nM was determined for a single class of noninteracting insulin binding sites. The apparent autophosphorylation of the beta-subunit was also unchanged following affinity chromatography. A single oligomeric structure was established for the purified receptor, composed only of 135,000- and 95,000-Da subunits, whose association was lost by denaturation in the presence of reducing agent. This single structure occurred in the initial Triton X-100 extract. The purified insulin receptor was capable of autophosphorylating the beta-subunit and catalyzed phosphorylation of protein substrates.  相似文献   

5.
Multimeric structure of the tumor necrosis factor receptor of HeLa cells   总被引:5,自引:0,他引:5  
The tumor necrosis factor (TNF) receptor of HeLa cells was solubilized in Triton X-100 and characterized by gel filtration, affinity labeling, and ligand blotting studies. Receptors solubilized with Triton X-100 eluted in gel filtration as a major peak of Mr = 330,000 and retained high affinity binding (KD = 0.25 nM). Affinity labeling of soluble receptor/125I-TNF complexes using the reversible, bifunctional bis[2-(succinimidooxycarbonyl-oxy)ethyl] sulfone resulted in the formation of cross-linked species of Mr = 310,000, 150,000-175,000, 95,000, and 75,000. The formation of these complexes was competitively inhibited by unlabeled TNF. Partial reversal of cross-linking in these complexes and their analysis by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved 125I-TNF dimers cleaved from the 95,000 band and 125I-TNF monomer cleaved from the 75,000 band, providing evidence for a Mr approximately 60,000 subunit. In addition, the 95,000 and 75,000 bands were resolved as components of larger complexes (Mr = 150,000-175,000), which presumably contain two receptor subunits. The Mr 95,000 and 75,000 bands were also released from the Mr 310,000 complex by reduction with dithiothreitol, suggesting a role for disulfide bond stabilization. To investigate the association of the putative receptor subunits, Triton X-100 extracts from HeLa membranes were fractionated by SDS-PAGE without reduction and transferred electrophoretically to nylon membranes for TNF binding assays. Only two bands of Mr = 60,000 and 70,000 specifically bound TNF, and higher Mr binding activity was not observed. These results indicate that TNF receptors in HeLa cells are high molecular weight complexes containing Mr = 60,000 and 70,000 subunits each capable of binding TNF and that the complexes are primarily stabilized by non-covalent, hydrophobic interactions.  相似文献   

6.
The envelope glycoprotein (G protein) of vesicular stomatitis virus is a transmembrane protein that exists as a trimer of identical subunits in the virus envelope. We have examined the effect of modifying the environment surrounding the membrane-spanning sequence on the association of G protein subunits using resonance energy transfer. G protein subunits were labeled with either fluorescein isothiocyanate or rhodamine isothiocyanate. When the labeled G proteins were mixed in the presence of the detergent octyl glucoside, mixed trimers containing both fluorescent labels were formed as a result of subunit exchange, as shown by resonance energy transfer between the two labels. In contrast when fluorescein- and rhodamine-labeled G proteins were mixed in the presence of Triton X-100, no resonance energy transfer was observed, indicating that subunit exchange did not occur in Triton X-100 micelles. However, if labeled G proteins were first mixed in the presence of octyl glucoside, energy transfer persisted after dilution with buffer containing Triton X-100. This result indicates that the G protein subunits remained associated in Triton X-100 micelles and that the failure to undergo subunit exchange was due to lack of dissociation of G protein subunits. Chemical cross-linking experiments confirmed that G protein was trimeric in the presence of Triton X-100. The efficiency of resonance energy transfer between labeled G protein was higher when G proteins were incorporated into dimyristoylphosphatidylcholine liposomes compared to detergent micelles. This result indicates that the labels exist in a more favorable environment for energy transfer in membranes than in detergent micelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have identified a 56-kDa fatty acid binding protein in rat renal basolateral membrane and purified it by extraction in nonionic detergent (Triton X-100), followed by gel filtration, DEAE-cellulose chromatography, and affinity chromatography. The purified protein was homogeneous on polyacrylamide gel electrophoresis in the presence of Triton X-100 or SDS. It showed amphiphilic properties on gel filtration, polyacrylamide gel electrophoresis, and oleate-Sepharose 4B chromatography. Its molecular mass was estimated to be 56 kDa by SDS-polyacrylamide gel electrophoresis. The protein showed optimal binding activity at pH 7.5 and 37 degrees C. The apparent Kd for palmitic acid was 0.79 microM. It was immunologically clearly distinct from renal cytosolic fatty acid binding protein.  相似文献   

8.
Antibodies were made to synthetic peptides corresponding to sequences specific to the glutamate receptor (GluR) subunits, GluR1-4. The specificity of the antibodies was established by Western blotting using membranes of simian kidney cells (COS-7) transfected with GluR subunit DNA. Four antibodies were found to be selective for each of the four GluR subunits, and a fifth antibody recognized both GluR2 and 3. All five antibodies immunoadsorbed Triton X-100-solubilized rat brain [3H]AMPA binding activity and labeled an Mr = 108,000 band in samples of rat brain. The structure of the Triton X-100-solubilized GluR was studied using subunit-specific antibodies covalently attached to protein A-agarose and analyzing GluR subunits bound to the antibodies by Western blotting. Each of the four subunit-specific antibodies immunoadsorbed its respective GluR subunit as well as the other three forms of GluR, showing that the detergent solubilized GluR exists as hetero-oligomers composed of two or more of the four subunits. Evidence supporting a similar structure for membrane bound GluR was obtained using synaptic membranes chemically cross-linked with dithiobis(succinimidylpropionate). GluR was immunoaffinity-purified using the GluR2 and 3-selective antibody. This antibody, covalently attached to protein A-agarose, adsorbed 55% of [3H]AMPA binding activity, and after elution with 1 M KSCN, 22-37% of the binding activity was recovered. Analysis of the purified product showed a major immunoreactive band at Mr = 108,000, and silver staining identified the same major band and no additional polypeptides. The GluR receptor complex, therefore, appears to be made up exclusively of GluR1-4. In the purified GluR preparation, in addition to the Mr = 108,000 band, three higher molecular weight immunoreactive components were also detected. These bands migrated at Mr = 325,000, 470,000, and 590,000. Similar sized proteins were seen in the cross-linked synaptic membrane sample, with the Mr = 590,000 component being substantially enriched after cross-linking. The Mr = 590,000 band is the largest component detected, and it has a size consistent with its being a pentamer of the Mr = 108,000 protein.  相似文献   

9.
A population of latent (cryptic) receptors for tumor necrosis factor-alpha (TNF) has been characterized in the rat liver plasma membrane (PM). 125I-TNF bound to high (Kd = 1.51 +/- 0.35 nM) and low (Kd = 13.58 +/- 1.45 nM) affinity receptors in PM. Solubilization of PM with 1% Triton X-100 prior to incubation with 125I-TNF increased both high affinity (from 0.33 +/- 0.04 to 1.67 +/- 0.05 pmol/mg of protein) and low affinity (from 1.92 +/- 0.16 to 7.57 +/- 0.50 pmol/mg of protein) TNF binding without affecting the affinities for TNF. Digestion of intact PM with chymotrypsin abolished most of the TNF binding capacity of PM. However, substantial binding activity was recovered by solubilization of chymotrypsin-treated PM with 1% Triton X-100, suggesting the presence of a large latent pool of TNF receptors. The affinities of the high and low affinity sites recovered from chymotrypsin-treated membranes were similar to those of intact PM. Affinity labeling of receptors whether from PM, solubilized PM, or membranes digested with chymotrypsin and then solubilized resulted in cross-linking of 125I-TNF into Mr 130,000, 90,000, and 66,000 complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, 125I-TNF binding to control and TNF-pretreated membranes was assayed. Specific binding was increased by pretreatment with TNF (p less than 0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF.  相似文献   

10.
gamma-Glutamyltranspeptidase is associated with the brush border membrane of kidney proximal straight tubule cells. It can be solubilized qualitatively by treatment with papain or Triton X-100. Neither procedure affects its catalytic activity but the two resulting forms of the enzyme differ considerably in their physical properties. The papain-solubilized transpeptidase is soluble in aqueous buffers and was purified 430-fold. It has an s20,w of 4.9 S, a Stokes radius of 36 A, and a calculated molecular weight of 69,000. It appears homogeneous by sedimentation equilibrium centrifugation (Mr=66,700). In contrast, the Triton-solubilized transpeptidase is soluble only in the presence of detergents and was purifed 300-fold. This form of the enzyme has a Stokes radius of 70 A but an s20,w of only 4.15 S. Aggregation of the enzyme just below the critical micelle concentration of Triton X-100 and its ability to bind 1.16 mg of Triton X-100-protein complex was calculated to be 169,000, but the glycoprotein portion of the complex is 52% of the total mass (87,000). The mass of Triton X-100 (82,000) is consistent with its reported micelle molecular weight. Treatment of the Triton-purified transpeptidase with papain or bromelain results in a form of the enzyme identical in all respects with the papain-purified enzyme. Both the Triton- and papain-purified transpeptidase exhibit two protein bands on sodium lauryl sulfate-polyacrylamide gel electrophoresis. The smaller subunits of the two forms appear identical (Mr=27,000), while the larger subunits of the Triton- and papain-purified enzyme have apparent molecular weights of 54,000 and 51,000, respectively. These data suggest that a peptide (3,000 to 19,000) in the larger subunit of gamma-glutamyltranspeptidase is responsible for its binding to Triton micelles and probably for holding the enzyme in the brush border membrane.  相似文献   

11.
Nitrobenzylthioinosine, a potent nucleoside-transport inhibitor, binds to high-affinity sites on the human erythrocyte membrane. This binding is a specific interaction with functional nucleoside-transport sites. The protein(s) responsible for high-affinity nitrobenzylthioinosine binding was purified 13-fold by treatment of haemoglobin-free 'ghosts' with EDTA (pH 11.2) to remove extrinsic proteins, extraction of the protein-depleted membranes with Triton X-100 and passage of the soluble extract through a DEAE-cellulose column equilibrated with Triton X-100. Void-volume fractions were collected and treated with Bio-Beads SM-2 to remove detergent. These fractions contained 31% of the starting nitrobenzylthioinosine-binding activity. They also contained D-glucose-sensitive cytochalasin B-binding activity. Nitrobenzylthioinosine binding to the partially purified preparation was saturable (apparent Kd 1.6 nM) and inhibited by nitrobenzylthioguanosine, dipyridamole and uridine. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of pooled void-volume fractions revealed the presence of only two detectable protein bands, the broad zone 4.5 (containing glucose-transport protein) and a small amount of band 7.  相似文献   

12.
The electron transfer complexes, succinate: ubiquinone reductase, ubiquinone: cytochrome c reductase, and cytochrome c: O2 oxidase were isolated from the mitochondrial membranes of Neurospora crassa by the following steps. Modification of the contents of the complexes in mitochondria by growing cells on chloramphenicol; solubilisation of the complexes by Triton X-100; affinity chromatography on immobilized cytochrome c and ion exchange and gel chromatography. Ubiquinone reductase was obtained in a monomeric form (Mr approximately 130 000) consisting of a flavin subunit (Mr 72 000) an iron-sulfur subunit (Mr 28 000) and a cytochrome b subunit (Mr probably 14 000). Cytochrome c reductase was obtained in a dimeric form (Mr approximately 550 000), the monomeric unit comprising the cytochromes b (Mr each 30 000), a cytochrome c1 (Mr 31 000), the iron-sulfur subunit (Mr 25 000), and six subunits without known prosthetic groups (Mr 9000, 11 000, 14 000, 45 000, 45 000, and 52 000). Cytochrome c oxidase was also isolated in a dimeric form (Mr approximately 320 000) comprising two copies each of seven subunits (Mr 9000, 12 000, 14 000, 18 000, 21 000, 29 000, and 40 000). The complexes were essentially free of phospholipid. Each bound one micelle of Triton X-100 (Mr approximately 90 000). After isolation, the bound Triton X-100 could be replaced by other nonionic detergents such as: alkylphenyl polyoxyethylene ethers, alkyl polyoxyethylene ethers and acyl polyoxyethylene sorbitan esters.  相似文献   

13.
A methotrexate-resistant subline of Lactobacillus casei has been isolated which transports folate at a reduced rate and contains a binding protein whose affinity for folate (Kd = 280 nM) is considerably lower than that of the corresponding protein of wild-type cells (Kd = 0.6 nM). After the addition of mercaptoethanol, however, this same protein exhibits a high affinity for folate (Kd = 1.2 nM) and transports the substrate at a normal rate. Subsequent removal of mercaptoethanol causes a rapid reversal of the activation process. Binding protein labeled covalently with carbodiimide-activated [3H]folate, solubilized with Triton X-100, and subjected to polyacrylamide gel electrophoresis in sodium dodecyl sulfate had an apparent molecular weight which was approximately twofold higher than that of the corresponding protein of wild-type cells, but it could be reduced to the parental size (Mr = 20,000) by prior treatment with mercaptoethanol. Purified binding protein also exhibited a similarly elevated molecular weight, and its amino acid composition was indistinguishable from that of the wild-type counterpart, except for the presence of a single cysteine residue. These findings indicate that the mutant binding protein exists in a low-affinity form due to disulfide bridge formation between two homologous protein subunits and that cleavage of this bond by mercaptoethanol generates the high-affinity state. The rapid and specific interconversion of these binding forms suggests further that the high-affinity form of the binding protein also resides in the membrane as a dimer, held together by noncovalent interactions.  相似文献   

14.
Cyclic AMP-dependent protein kinase from human erythrocyte plasma membranes was solubilized with Triton X-100, partially purified, and systematically characterized by a series of physicochemical studies. Sedimentation and gel filtration experiments showed that the 6.6 S holoenzyme had a Stokes radius (a) of 5.7 nm and was dissociated into native 4.8 S cAMP-binding (a = 4.5 nm) and 3.2 S catalytic (a = 2.6 nm) subunits. A minimum subunit molecular weight of 48,000 was established for the regulatory subunit by photoaffinity labeling with 8-azido[32P]cAMP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography. These data suggest an asymmetric tetrameric (R2C2) structure (Mr approximately equal to 160,000) for the membrane-derived enzyme. Membrane-derived protein kinase was characterized as a type I enzyme on the basis of its R subunit molecular weight, pI values (R, 4.9; holoenzyme, 5.75 and 5.95), dissociation by 0.5 M NaCl and 50 microgram/ml of protamine, 20-fold reduced affinity for cAMP in the presence of 0.3 mM MgATP, elution from DEAE-cellulose at low ionic strength, and kinetic and cAMP-binding properties. The physicochemical properties of the membrane protein kinase closely parallel the characteristics of erythrocyte cytosolic protein kinase I but are clearly dissimilar from those of the soluble type II enzyme. Moreover, regulatory subunits of the membrane-associated and cytosolic type I kinases were indistinguishable in size, shape, subunit molecular weight, charge, binding and reassociation properties, and peptide maps of the photoaffinity-labeled cAMP-binding site, suggesting a high degree of structural and functional homology in this pair of enzymes. In view of the predominant occurrence of particulate type II protein kinases in rabbit heart and bovine cerebral cortex, the present results suggest that the distribution of membrane-associated protein kinases may be tissue- or species-specific, but not isoenzyme-specific.  相似文献   

15.
The binding characteristics of reduced hepatic membrane proteins for acetylated low-density lipoprotein (acetyl-LDL) and maleylated bovine serum albumin (Mal-BSA) have been examined. Two receptor activities were extracted from hepatic membranes in the presence of octyl beta-D-glucoside and beta-mercaptoethanol, and were separated by chromatography on Mal-BSA-Sepharose 4B. The receptors were revealed by ligand blotting. The active binding proteins had apparent molecular masses of 35 and 15 kDa in SDS/polyacrylamide gels. Equilibrium studies with protein-phosphatidylcholine complexes indicated that the reduced 35 kDa protein expresses two binding sites for Mal-BSA and one for acetyl-LDL, whereas the 15 kDa protein-phosphatidylcholine complex binds 131I-Mal-BSA and 131I-acetyl-LDL with a 4:1 stoichiometry. 131I-Mal-BSA binding was linear with both proteins, with a Kd of 4.8 nM at the 35 kDa protein and a Kd of 5.6 nM at the 15 kDa protein. The 35 kDa protein displayed saturable binding of 131I-acetyl-LDL with a Kd of 5 nM; the 15 kDa binding protein bound 131I-acetyl-LDL with a Kd of 2.3 nM. A 85 kDa protein was obtained by Mal-BSA-Sepharose chromatography when the hepatic membranes had been solubilized with Triton X-100 in presence of GSH/GSSG. This protein displayed saturable 131I-Mal-BSA binding with a Kd of 30 nM and 131I-acetyl-LDL binding with a Kd of 6.5 nM. The 131I-Mal-BSA binding capacity was four times higher than that of 131I-acetyl-LDL. Competition studies with the 35 kDa, 15 kDa and 85 kDa proteins binding Mal-BSA, acetyl-LDL, formylated albumin and polyanionic competitors provide evidence for the existence of more than one class of binding sites at the reduced binding proteins.  相似文献   

16.
Specific binding of radiolabeled human chorionic gonadotropin (hCG) to nuclei isolated from pseudopregnant rat ovaries was studied. Incubation of cultured luteal cells or isolated nuclei with fluorescein isothiocyanate conjugated hCG showed concentration of fluorescence in the nuclear region. Isolated nuclei exhibited saturable high affinity binding of radiolabeled hCG with an apparent Kd of 3.42 X 10(-10) M. The binding was inhibited by increasing concentrations of unlabeled hCG. Under dissociating conditions, the bound hCG was dissociated from the nuclei. However, unlike the plasma membranes, the hCG bound to nuclei was not degraded before dissociation. Radiolabeled hCG bound to the nuclei could also be dissociated by brief exposure to MgCl2 or acidic incubation medium. The bound hCG was not extractable with 4M KCl or 2% Triton X-100. The available evidence suggest that nuclear receptors are distinct from plasma membrane receptors for hCG.  相似文献   

17.
Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.  相似文献   

18.
The assembly polypeptides are an integral component of coated vesicles and may mediate the linkage of clathrin to the vesicle membrane. We have purified assembly polypeptides in milligram quantities from bovine brain by an improved procedure. Hydrodynamic and chemical crosslinking studies indicate that the protein is an asymmetric heterotetramer with a molecular weight of 252,000, containing two subunits of Mr 98,000-115,000, one subunit of 52,000, and one subunit of 16,000. Two-dimensional peptide maps of the subunits show that the 16- and 52-kD polypeptides are not derived from the higher molecular weight species, and that the group of bands at 98-115 kD are related. Electron microscopic visualization shows an essentially globular protein with one or two knob-like tails. We demonstrate a specific membrane protein binding site for 125I-labeled assembly polypeptides in 0.1 N sodium hydroxide-extracted bovine brain membranes based on the following criteria: (a) binding is displaceable by unlabeled ligand, (b) the binding site is destroyed by protease treatment of the membranes, and (c) the distribution of binding between vesicle-depleted membranes and coated vesicle membranes parallels the in vivo localization of assembly polypeptides and clathrin. This binding site is likely to be an integral membrane protein because (a) it is enriched in the sodium hydroxide-extracted membranes stripped of most of their peripheral membrane proteins, and (b) the binding site is partially extracted by 0.5% Triton X-100. A similar binding site appears to be present in coated vesicles. Clathrin binds to the hydroxide-stripped membranes in an assembly polypeptides dependent manner, and this binding is diminished by Triton extraction of the membranes. This assay may aid in identification of the membrane receptor for the assembly polypeptides.  相似文献   

19.
Membranes derived from free floating granulosa cells in porcine ovarian follicular fluid were used as a starting material for structural characterization of both LH/hCG and FSH receptors. The receptors were highly hormone-specific and showed single classes of high-affinity binding sites (Kd = 19-74 pM). Their molecular weights as determined by affinity cross-linking with their respective 125I-ligands were similarly 70,000. The membrane-localized receptors could be solubilized with reduced Triton X-100 in the presence of 20% glycerol with good retention of hormone binding activity. The Triton extracts of membranes also showed hormone specificity and equilibrium binding constants similar to the membrane receptors (Kd = 32-48 pM). Affinity chromatography on divinylsulfonyl-Sepharose-oLH columns was utilized to purify the solubilized LH/hCG receptor to a specific activity of 2000 pmol/mg of protein. The purified receptor exhibited a high specificity for hCG and hLH but not for hFSH nor bTSH. The purified receptor was iodinated and visualized to be composed of a major protein of Mr approximately 70,000 and other minor proteins of molecular weights ranging from 14,000 to 40,000. Except for the Mr 14,000 protein, all other protein species bound to the concanavalin A-Sepharose column. The data suggest that the ovarian LH/hCG and FSH receptors are structurally similar and consist of a single polypeptide chain, as recently documented for the LH/hCG receptor (Loosefelt et al., 1989; McFarland et al., 1989).  相似文献   

20.
S Sakai  F Ike  K Kohmoto    T Johke 《The Biochemical journal》1986,237(3):647-653
Rabbit mammary-gland prolactin (Prl) receptors in the microsomal fraction were solubilized in 7.5 mM-Chaps) or 1% Triton X-100 and analysed by ion-exchange chromatography using DEAE-Bio-Gel A. Prl receptors in the presence of 7.5 mM-Chaps were separated into two different fractions (Fr. A and B), both of which showed identical specificity of binding to peptide hormones as those in the Chaps or Triton extract. oPrl and human growth hormone (hGH) bound to the same site, but other non-lactogenic hormones (follicle-stimulating hormone, oGH, luteinizing hormone and insulin) failed to bind to the Prl receptors. The dissociation constant (Kd) for Prl binding to the receptors in Fr. A was about 50% of those in Fr. B, suggesting that the rabbit mammary gland contains two types of Prl receptors, one with a high, and one with a low, Kd for Prl binding. A decrease in the concentration of Chaps in the column buffer to 4 mM caused aggregation of the receptors in Fr. A. H.p.l.c.-gel filtration, using Shim pack 150 and 300 columns connected in series, separated the receptor as a protein with an Mr of 74,000 +/- 4,900 (mean +/- S.D.) in the presence of 5 mM-Chaps, or of 36,800 +/- 2,100 in the presence of 7.5 mM-Chaps. Sucrose-gradient-centrifugation analysis showed that the Prl-receptor complexes in the presence of 5 mM-Chaps were sedimented between gamma-globulin and bovine serum albumin (5.56 +/- 0.22 S). As the Chaps concentration was increased to 7.5 mM, a further peak of the Prl-receptor complexes (4.01 +/- 0.23 S) appeared below ovalbumin. The present data suggest that the binding subunit causes the monomeric subunit to aggregate with itself or with another specific associated protein of similar Mr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号