首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

2.
Saffron comes from the dried red stigmas of the Crocus sativus L. flower. Except for its use in cooking and in traditional medicine, it has numerous applications as an antitoxic, antioxidant, and anticancer agent due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). However, there has been no information on the interactions of these secondary metabolites with individual DNA at molecular level. This study was designed to examine the interaction of safranal, crocetin (CRT), and dimethylcrocetin (DMCRT) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various drug/DNA(phosphate) molar ratios from 1/48 to 1/2. FTIR and UV-visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants, and the effects of carotenoids and safranal complexation on the stability and conformation of DNA duplex. Both intercalative and external binding modes were observed, with overall binding constants K(safranal) = 1.24 x 10(3) M(-1), K(CRT) = 6.2 x 10(3) M(-1) and K(DMCRT) = 1.85 x 10(5) M(-1) A partial B- to A-DNA transition occurs at high carotenoids and safranal concentrations.  相似文献   

3.
Antioxidants are essential to good health. Flavonoids are powerful antioxidants, and prevent DNA damage. The antioxidative protections are related to their binding modes to a DNA duplex and complexation with free radicals in vivo. Recently we reported the interaction of flavonoids with DNA in vitro (Kanakis et al., J. Biomol. Struct. Dyn. 22, 719-724, 2005), where polyphenol different binding modes were discussed. The aim of this study was to examine the interaction of transfer RNA with quercetin (que), kaempferol (kae), and delphinidin (del) in aqueous solution at physiological conditions and to make a comparison with the corresponding pigment-DNA adducts. Constant tRNA concentration (6.25 mM) and various drug/RNA(phosphate) molar ratios of 1/48 to 1/8 were used. FTIR and UV-visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants, and the effects of drug complexation on the stability and conformation of tRNA duplex. Both intercalative and external binding modes were observed. Structural analysis showed que, kae, and a del intercalate tRNA duplex with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants K (que) = 4.80 x 10(4) M(1), K (kae) = 4.65 x 10(4) M(1), and K (del) = 9.47 x 10(4) M(1). The stability of adduct formation is in the order of del > que > kae. A comparison with flavonoids-DNA adducts showed both intercalation and external bindings with the stability order K (que) = 7.25 x 10(4) M(1), K (kae) = 3.60 x 10(4) M(1), and K (del) = 1.66 x 10(4) M(1). Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial Bto A-DNA transition occurs at high drug concentration, while tRNA remains in the A-family structure.  相似文献   

4.
The anticancer platinum (Pt) drugs exert their antitumor activity by direct or indirect Pt-DNA binding. It has been shown that Pt drugs can induce major DNA damage and minor RNA damage during cancer treatment. A recent report showed that a new anticancer estradiol-Pt(II) hybrid molecule (CD-37) binds DNA bases indirectly, while being more effective than cis-diaminedichloroplatinum(II) (cisplatin) against several types of cancer. In this report, we examine the bindings of CD-37 and cisplatin drugs with transfer RNA (tRNA) in vitro and compare the results to those of the corresponding Pt-DNA complexes. Solutions containing various CD-37 or cisplatin concentrations were reacted with tRNA at physiological pH. Using Fourier transform infrared (FTIR), UV-visible, and circular dichroism spectroscopic methods, the drug binding mode, the binding constant, and RNA structural variations are determined for Pt-tRNA complexes in aqueous solution. Structural analysis showed direct binding of cisplatin drug to guanine and adenine N7 sites, while both direct and indirect interactions of CD-37 with tRNA bases and the backbone phosphate group were observed. The overall binding constants estimated were K(CD-37) = 2.77 (+/-0.90) x 10(4) M(1) and K(cisplatin) = 1.72 (+/-0.50) x 10(4) M(1). Major aggregation of tRNA occurs at high CD-37 concentrations, while RNA remains in the A-family structure.  相似文献   

5.
Major attention has been focused on dendrimer-DNA complexes because of their applications in gene delivery systems. Dendrimers are also used to transport miRNA and siRNA in vitro. We examine the interaction of tRNA with several dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions using constant tRNA concentration and various dendrimer contents. FTIR, UV-visible, and CD spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the macromolecule binding mode, the binding constant, and the effects of dendrimer complexation on RNA stability, aggregation, particle formation, and conformation. Structural analysis showed that dendrimer-tRNA complexation occurred via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(mPEG-G3) = 7.6 (± 0.9) × 10(3) M(-1), K(mPEG-G4) = 1.5 (± 0.40) × 10(4) M(-1), and K(PAMAM-G4) = 5.3 (± 0.60) × 10(4) M(-1) show stronger polymer-RNA complexation by PAMAM-G4 than pegylated dendrimers. RNA remains in the A-family structure, whereas biopolymer aggregation and particle formation occurred at high polymer concentrations.  相似文献   

6.
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG?3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG?6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.  相似文献   

7.
Deoxyribonuclease I (DNase I) binds right-handed DNA duplex via a minor groove and the backbone phosphate group with no contact to the major groove. It hydrolyses double-stranded DNA predominantly by a single-stranded nicking mechanism under physiological conditions, in the presence of divalent Mg and Ca cations. Even though DNase-RNA interaction was observed, less is known about the protein-RNA binding mode and the effect of such complexation on both protein and RNA conformations. The aim of this study was to examine the effects of DNase I-tRNA interaction on tRNA and protein conformations. The interaction of DNase I with tRNA is monitored under physiological conditions, in the absence of Mg2+, using constant DNA concentration of 12.5 mM (phosphate) and various protein contents (10 microM to 250 microM). FTIR, UV-visible, and CD spectroscopic methods were used to analyze the protein binding mode, the binding constant, and the effects of polynucleotide-enzyme interaction on both tRNA and protein conformations. Spectroscopic evidence showed major DNase-PO2 and minor groove interactions with overall binding constant of K = 2.1 (+/-0.7) x 10(4) M(-1). The DNase I-tRNA interaction alters protein secondary structure with major reduction of the alpha-helix, and increases the random coil, beta-anti and turn structures, while tRNA remains in the A-conformation. No digestion of tRNA by DNase I was observed in the protein-tRNA complexes.  相似文献   

8.
The interactions of the steroidal and nonsteroidal estrogen-platinum (Pt) (II)-based anticancer drugs 16beta-hydroxymethyl-16alpha-[8-(2-pyridin-2-yl-ethylamino)-3,6-dioxaoctyl]-1,3,5(10)-estratrien-3,17betadiol dichloroplatinum (II) (JPM-39), 4-[6-(2'-pyridylethylamino)-butyloxy)-phenyl]-7-methoxy-2,2-dimethyl-3-phenyl-chroman dichloroplatinum (II) (ATG-99), and 1-[(2-aminoethyl)amino]-9,10,10-tris(4-hydroxyphenyl)-9-decene dichloroplatinum (II) (GEB-28) with calf-thymus DNA in vitro using constant DNA concentration and various drug levels were studied. Fourier transform infrared (FTIR) and circular dichroism (CD) were studied with calf-thymus DNA in vitro using constant DNA concentration and various drug levels. FTIR, UV-visible, and CD spectroscopic methods were used to characterize the drug binding mode, the binding constant, and structural variations of DNA in aqueous solution. Spectroscopic evidence showed that the various Pt-based drugs bind indirectly to the major and minor grooves of DNA duplex with some degree of drug-phosphate interaction. The overall binding constants for JPM-39, GEB-28, and ATG-99 are K(JPM-39) = 4.2 (+/-0.75) x 10(3) M(-1), K(GEB-28) = 3.4 (+/-0.65) x 10(3) M(-1), and K(ATG-99) = 2.1 (+/-0.45) x 10(3) M(-1). DNA aggregation occurs at high drug concentration, while DNA remains in the B-family structure.  相似文献   

9.
10.
Payne JC  Rous BW  Tenderholt AL  Godwin HA 《Biochemistry》2003,42(48):14214-14224
Zinc binding to the two Cys(4) sites present in the DNA-binding domain (DBD) of nuclear hormone receptor proteins is required for proper folding of the domain and for protein activity. By utilizing Co(2+) as a spectroscopic probe, we have characterized the metal-binding properties of the two Cys(4) structural zinc-binding sites found in the DBD of human estrogen receptor alpha (hERalpha-DBD) and rat glucocorticoid receptor (GR-DBD). The binding affinity of Co(2+) to the two proteins was determined relative to the binding affinity of Co(2+) to the zinc finger consensus peptide, CP-1. Using the known dissociation constant of Co(2+) from CP-1, the dissociation constants of cobalt from hERalpha-DBD were calculated: K(d1)(Co) = 2.2 (+/- 1.0) x 10(-7) M and K(d2)(Co) = 6.1 (+/- 1.5) x 10(-7) M. Similarly, the dissociation constants of Co(2+) from GR-DBD were calculated: K(d1)(Co) = 4.1 (+/- 0.6) x 10(-7) M and K(d2)(Co) = 1.7 (+/- 0.3) x 10(-7) M. Metal-binding studies conducted in which Zn(2+) displaces Co(2+) from the metal-binding sites of hERalpha-DBD and GR-DBD indicate that Zn(2+) binds to each of the Cys(4) metal-binding sites approximately 3 orders of magnitude more tightly than Co(2+) does: the stoichiometric dissociation constants are K(d1)(Zn) = 1 (+/- 1) x 10(-10) M and K(d2)(Zn) = 5 (+/- 1) x 10(-10) M for hERalpha-DBD and K(d1)(Zn) = 2 (+/- 1) x 10(-10) M and K(d2)(Zn) = 3 (+/- 1) x 10(-10) M for GR-DBD. These affinities are comparable to those observed for most other naturally occurring structural zinc-binding sites. In contrast to the recent prediction by Low et. al. that zinc binding in these systems should be cooperative [Low, L. Y., Hernández, H., Robinson, C. V., O'Brien, R., Grossmann, J. G., Ladbury, J. E., and Luisi, B. (2002) J. Mol. Biol. 319, 87-106], these data suggest that the zincs that bind to the two sites in the DBDs of hERalpha-DBD and GR-DBD do not interact.  相似文献   

11.
Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these antioxidants with individual DNA at molecular level. This study was designed to examine the interaction of quercetin (que), kaempferol (kae), and delphinidin (del) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.5 mmol) and various drug/DNA(phosphate) ratios of 1/65 to 1. FTIR and UV-Visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants and the effects of drug complexation on the stability and conformation of DNA duplex. Structural analysis showed quercetin, kaempferol, and delphinidin bind weakly to adenine, guanine (major groove), and thymine (minor groove) bases, as well as to the backbone phosphate group with overall binding constants K(que) = 7.25 x 10(4)M(-1), K(kae) = 3.60 x 10(4)M(-1), and K(del) = 1.66 x 10(4)M(-1). The stability of adduct formation is in the order of que>kae>del. Delphinidin with a positive charge induces more stabilizing effect on DNA duplex than quercetin and kaempferol. A partial B to A-DNA transition occurs at high drug concentrations.  相似文献   

12.
13.
DNA adducts with antioxidant flavonoids: morin, apigenin, and naringin   总被引:1,自引:0,他引:1  
Flavonoids have recently attracted a great interest as potential therapeutic drugs against a wide range of free-radical-mediated diseases. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. While the antioxidant activity of these natural polyphenolic compounds is well known, their bindings to DNA are not fully investigated. This study was designed to examine the interactions of morin (Mor), naringin (Nar), and apigenin (Api) with calf thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various drug/DNA(phosphate) ratios of 1/40 to 1. FTIR and UV-Vis spectroscopic methods were used to determine the ligand binding modes, the binding constant, and the stability of DNA in flavonoid-DNA complexes in aqueous solution. Spectroscopic evidence shows both intercalation and external binding of flavonoids to DNA duplex with overall binding constants of K(morin) = 5.99 x 10(3) M(-1), K(apigenin) = 7.10 x 10(4) M(-1), and K(naringin) = 3.10 x 10(3) M(-1). The affinity of ligand-DNA binding is in the order of apigenin > morin > naringin. DNA aggregation and a partial B- to A-DNA transition occurs upon morin, apigenin, and naringin complexation.  相似文献   

14.
15.
Biogenic polyamines, putrescine, spermidine, and spermine, are ubiquitous cellular cations and exert multiple biological functions. Polyamine analogues mimic biogenic polyamines at macromolecular level but are unable to substitute for natural polyamines and maintain cell proliferation, indicating biomedical applications. The mechanistic differences in DNA binding mode between natural and synthetic polyamines have not been explored. The aim of this study was to examine the interaction of calf thymus DNA with three polyamine analogues, 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333), and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333), using FTIR, UV-visible, and CD spectroscopy. Polyamine analogues bind with guanine and backbone PO2 group as major targets in DNA, whereas biogenic polyamines bind to major and minor grooves as well as to phosphate groups. Weaker interaction with DNA was observed for analogues with respect to biogenic polyamines, with K(333) = 1.90 (+/-0.5) x 10(4) M(-1), K(BE-333) = 6.4 (+/-1.7) x 10(4) M(-1), K(BE-3333) = 4.7 (+/-1.4) x 10(4) M(-1) compared to K(Spm) = 2.3 (+/-1.1) x 10(5) M(-1), K(Spd) = 1.4 (+/-0.6) x 10(5) M(-1), and K(Put) = 1.02 (+/-0.5) x 10(5) M(-1). A partial B- to A-DNA transition was also provoked by analogues. These data suggest distinct differences in the binding of natural and synthetic polyamines with DNA.  相似文献   

16.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2',5'-phosphates. Even though extensive structural information is available on RNase A complexes with mononucleotides and oligonucleotides, the interaction of RNase A with tRNA has not been fully investigated. We report the complexation of tRNA with RNase A in aqueous solution under physiological conditions, using a constant RNA concentration and various amounts of RNase A. Fourier transform infrared, UV-visible, and circular dichroism spectroscopic methods were used to determine the RNase binding mode, binding constant, sequence preference, and biopolymer secondary structural changes in the RNase-tRNA complexes. Spectroscopic results showed 2 major binding sites for RNase A on tRNA, with an overall binding constant of K = 4.0 x 105 (mol/L)-1. The 2 binding sites were located at the G-C base pairs and the backbone PO2 group. Protein-RNA interaction alters RNase secondary structure, with a major reduction in alpha helix and beta sheets and an increase in the turn and random coil structures, while tRNA remains in the A conformation upon protein interaction. No tRNA digestion was observed upon RNase A complexation.  相似文献   

17.
18.
Arc repressor is tetrameric when bound to operator DNA   总被引:10,自引:0,他引:10  
B M Brown  J U Bowie  R T Sauer 《Biochemistry》1990,29(51):11189-11195
The Arc repressor of bacteriophage P22 is a member of a family of DNA-binding proteins that use N-terminal residues in a beta-sheet conformation for operator recognition. Here, Arc is shown to bind to its operator site as a tetramer. When mixtures of Arc (53 residues) and an active variant of Arc (78 residues) are used in gel retardation experiments, five discrete protein-DNA complexes are observed. This result is as expected for operators bearing heterotetramers containing 4:0, 3:1, 2:2, 1:3, and 0:4 ratios of the two proteins. Direct measurements of binding stoichiometry support the conclusion that Arc binds to a single 21-base-pair operator site as a tetramer. The Arc-operator binding reaction is highly cooperative (Hill constant = 3.5) and involves at least two coupled equilibria. In the first reaction, two unfolded monomers interact to form a folded dimer (Bowie & Sauer, 1989a). Rapid dilution experiments indicate that the Arc dimer is the kinetically significant DNA-binding species and allow an estimate of the equilibrium dissociation constant for dimerization [K1 = 5 (+/- 3) x 10(-9) M]. The rate of association of Arc-operator complexes shows the expected second-order dependence on the concentration of free Arc dimers, with k2 = 2.8 (+/- 0.7) x 10(18) M-2 s-1. The dissociation of Arc-operator complexes is a first-order process with k-2 = 1.6 (+/- 0.6) x 10(-4) s-1. The ratio of these kinetic constants [K2 = 5.7 (+/- 2.3) x 10(-23) M2] provides an estimate for the equilibrium constant for dissociation of the DNA-bound tetramer to two free Arc dimers and the operator. An independent determination of this complex equilibrium constant [K2 = 7.8 (+/- 4.8) x 10(-23) M2] was obtained from equilibrium binding experiments.  相似文献   

19.
Anions interact with protein to induce structural changes at ligand binding sites. The effects of anion complexation include structural stabilization and promote cation-protein interaction. This study was designed to examine the interaction of aspirin and ascorbate anions with the Na+, K+-dependent adenosine triphosphatase (Na,K-ATPase) in H2O and D2O solutions at physiological pH, using anion concentrations of 0.1 microM to 1 mM with final protein concentration of 0.5 to 1 mg/ml. Absorption spectra and Fourier transform infrared (FTIR) difference spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were applied to characterize the anion binding mode, binding constant, and the protein secondary structure in the anion-ATPase complexes. Spectroscopic evidence showed that the anion interaction is mainly through the polypeptide C=O and C-N groups with minor perturbation of the lipid moiety. Evidence for this came from major spectral changes (intensity variations) of the protein amide I and amide II vibrations at 1651 and 1550 cm(-1). respectively. The anion-ATPase binding constants were K=6.45 x 10(3) M(-1) for aspirin and K=1.04 x 10(4) M(-1) for ascorbate complexes. The anion interaction resulted in major protein secondary structural changes from that of the alpha-helix 19.8%; beta-pleated sheet 25.6%; turn 9.1%; beta-antiparallel 7.5% and random 38% in the free Na,K-ATPase to that of the alpha-helix 24-26%; beta-pleated 17-18%; turn 8%; beta-antiparallel 5-3% and random 45.0% in the anion-ATPase complexes.  相似文献   

20.
AZT-DNA interaction   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号