首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping adenines, guanines, and pyrimidines in RNA.   总被引:392,自引:248,他引:144       下载免费PDF全文
The positions of adenines, guanines, and pyrimidines can be determined by partial nuclease digestion of a terminally labeles RNA molecule. In urea, at elevated temperatures, RNase T1 generates a pattern reflecting cleavage at guanines while RNase U2 cleaves only at adenine. A limited alkaline hydrolysis provides a continuum of fragments derived from breaks at every phosphodiester bond. The reaction products are electrophoretically fractionated by size in adjacent lanes of a polyacrylamide gel. An autoradiograph of the gel displays the sequence up to 100 nucleotides from the end of the molecule, although uracil cannot as yet be distinguished from cytosine. These techniques form the basis of an RNA sequencing method and are demonstrated on yeast 5.8S ribosomal RNA.  相似文献   

2.
Ribonuclease III cleaves the genome RNA of vesicular stomatitis virus (VSV) to yield an array of fragments which range in size from 3.5 to 0.1 x 10(6) daltons under partial digestion conditions. The locations of the RNase III cleavage sites which give rise to these fragments have been ordered relative to the 3' end of the virion RNA by digestion of 3' end-labeled RNA. Based on a map of the cleavage sites we predicted that fragments having the same size could be generated which contain information from each gene. Annealing of individual VSV mRNA probes to Northern blots of the separated RNase III-generated fragments confirmed that fragments having the same size are, in fact, generated which contain information from each coding region of the VSV genome. Analysis of maps of partial digestion products indicates that fragments having the same size arise repeatedly along the 3' half of the genome. The cleavage of VSV RNA by RNase III can be detected only if the nuclease treated molecules are denatured. This suggest that the structure features in VSV RNA which signal cleavage involve areas of higher order RNA structure.  相似文献   

3.
The small nuclear RNAs U4 and U6 display extensive sequence complementarity and co-exist in a single ribonucleoprotein particle. We have investigated intermolecular base-pairing between both RNAs by psoralen cross-linking, with emphasis on the native U4/U6 ribonucleoprotein complex. A mixture of small nuclear ribonucleoproteins U1 to U6 from HeLa cells, purified under non-denaturing conditions by immune affinity chromatography with antibodies specific for the trimethylguanosine cap of the small nuclear RNAs was treated with aminomethyltrioxsalen. A psoralen cross-linked U4/U6 RNA complex could be detected in denaturing polyacrylamide gels. Following digestion of the cross-linked U4/U6 RNA complex with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate cross-linked fragments. These fragments were analysed by chemical sequencing methods and their positions identified within RNAs U4 and U6. Two overlapping fragments of U4 RNA, spanning positions 52 to 65, were cross-linked to one fragment of U6 RNA (positions 51 to 59). These fragments show complementarity over a contiguous stretch of eight nucleotides. From these results, we conclude that in the native U4/U6 ribonucleoprotein particle, both RNAs are base-paired via these complementary regions. The small nuclear RNAs U4 and U6 became cross-linked in the deproteinized U4/U6 RNA complex also, provided that small nuclear ribonucleoproteins were phenolized at 0 degree C. When the phenolization was performed at 65 degrees C, no cross-linking could be detected upon reincubation of the dissociated RNAs at lower temperature. These results indicate that proteins are not required to stabilize the mutual interactions between both RNAs, once they exist. They further suggest, however, that proteins may well be needed for exposing the complementary RNA regions for proper intermolecular base-pairing in the course of the assembly of the U4/U6 RNP complex from isolated RNAs. Our results are discussed also in terms of the different secondary structures that the small nuclear RNAs U4 and U6 may adopt in the U4/U6 ribonucleoprotein particle as opposed to the isolated RNAs.  相似文献   

4.
A method for the isolation of RNA fragments originating from defined regions of bacteriophage Qbeta RNA minus strands is described. Large RNase T1 oligonucleotides were isolated on a preparative scale from Qbeta RNA. The nucleotide sequences (13 to 26 nucleotides) and map positions of these oligonucleotides were known from previous work (Billeter, M. A. (1978) J. Biol. Chem. 253, 8381-8389). After addition of AMP residues (50 in the average) using terminal adenylate transferase, these pure oligonucleotides were hybridized to 32P-labeled Qbeta RNA minus strands synthesized in vitro. Fragments in the size range of 100 to 500 nucleotides were then generated by partial digestion with RNase T1. Fragments hybridized to such oligonucleotides were recovered by chromatography on poly(U)-Sephadex and then resolved according to their size by polyacrylamide gel electrophoresis. The specificity and reproducibility of the method as well as its suitability for the sequence analysis of Qbeta RNA was verified by using in particular a linker oligonucleotide derived from a Qbeta RNA region near the 3' end. The sequence catalogues of the RNase T1 and RNase A oligonucleotides of two fragments isolated in this way, 202 and 310 nucleotides in length, were established and all fragments isolated were shown to contain a sequence complementary to the linker oligonucleotide.  相似文献   

5.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

6.
The 5' splice site sequences of 3294 introns from various organisms (1-672) were analyzed in order to determine the rules governing evolution of this sequence, which may shed light on the mechanism of cleavage at the exon-intron junction. The data indicate that, currently, in all organisms, a common sequence 1GUAAG6U and its derivatives are used as well as an additional sequence and its derivatives, which differ in metazoa (G/1GUgAG6U), lower eucaryotes (1GUAxG6U) and higher plants (AG/1GU3A). They all partly resemble the prototype sequence AG/1GUAAG6U whose 8 contigous nucleotides are complementary to the nucleotides 4-11 of U1RNA, which are perfectly conserved in the course of phylogenetic evolution. Detailed examination of the data shows that U1RNA can recognize different parts of 5' splice sites. As a rule, either prototype nucleotides at position -2 and -1 or at positions 4, 5 or 6 or at positions 3-4 are dispensable provided that the stability of the U1RNA-5' splice site hybrid is conserved. On the basis of frequency of sequences, the optimal size of the hybridizable region is 5-7 nucleotides. Thus, the cleavage at the exon-intron junction seems to imply, first, that the 5' splice site is recognized by U1RNA according to a "variable geometry" program; second, that the precise cleavage site is determined by the conserved sequence of U1RNA since it occurs exactly opposite to the junction between nucleotides C9 and C10 of U1RNA. The variable geometry of the U1RNA-5' splice site association provides flexibility to the system and allows diversification in the course of phylogenetic evolution.  相似文献   

7.
A second major species of leucine tRNA, tRNA Leu UAG (formerly designated tRNA Leu CUA) was purified from baker's yeast in a three-step procedure entailing BD-cellulose chromatography in the presence and absence of Mg2+ and Sephadex G-100 gel filtration. Results of aminoacylation and partial RNase T1 digestion experiments showed that this tRNA retains a native conformation under conditions that denature yeast tRNA Leu m5CAA (tRNA3 Leu). The primary structure of baker's yeast tRNA Leu UAG was elucidated by application of sensitive radioactive isotope derivative ("postlabeling") methods. Complete RNase T1 and A and partial RNase U2 fragments, prepared from non-radioactive tRNA and 5'-half and 3'-half molecules, were separated by two-dimensional polyethyleneimine-cellulose anion-exchange thin-layer chromatography and isolated by a novel micropreparative procedure affording high yields of these compounds in sufficient purity for subsequent tritium derivative analysis. Base composition and sequence of oligonucleotides were analyzed by tritium derivative methods. Molar ratios of the fragments were determined from the radioactivity of 3H-labeled nucleoside trialcohols in combination with base analysis. 2'-O-Methylated guanosine was characterized using the [gamma-32P]ATP/polynucleotide kinase reaction. The analysis of classical complete and partial RNase digests by the tritium derivative methods yielded the complete nucleotide sequence of the tRNA. A total of about 20 A260 units of the RNA was used for analysis, i.e. considerably less material than required for conventional spectrophotometric analysis. A different sequencing approach, consisting of a combination of "readout sequencing" with tritium sequencing of complete RNase T1 and A fragments, was applied to the 3'-half molecule. The 3'-half molecule was labeled with 32P at its 5' terminus, partially degraded with RNase T1, U2, and Phy1 and with alkali, and subjected to polyacrylamide gel electrophoresis. The sequence was read off the gel on the basis of cleavage patterns and size of the fragments. While the readout procedure provided only the positions of A, U, C, and G residues in the chain, additional information from tritium derivative analysis was utilized to define the positions of the modified nucleosides. The readout sequencing procedure was found to require less than 0.01 A260 unit of RNA and the analysis of the complete fragments about 6 A260 units. Interesting structural features of tRNA Leu UAG are (a) the location of unique, leucine tRNA iso-acceptor-specific sequences next to U-8, a constant nucleotide participating in synthetase recognition, (b) the occurrence of 1-methyladenosine in the T loop, a modification not present in the structurally related tRNA Leu m5CAA, and (c) the unusual presence of an unmodified uridine in the first position of the anticodon, which may be related to the unusual coding properties reported for this tRNA.  相似文献   

8.
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y?2 N?1 *G+1 U+2 Y+3 B+?, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U?2 G?1 *G+1 U+2 A+3 A+? sites. Substrates with G?1 *G+1 U+2 A+3 sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+3 and A+? are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G? →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A? with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A?, C? and G?. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.  相似文献   

9.
10.
We show here that human U2 small nuclear RNA genes contain a 'strong nuclease S1 cleavage site' (SNS1 site), a sequence that is very sensitive to digestion by nuclease S1. This site is located 0.50-0.65 kb downstream of the U2 RNA coding region. It comprises a 0.15-kb region in which (dC-dT)n:(dA-dG)n co-polymeric stretches represent greater than 90% of the sequence. Nuclease S1 is able to excise unit length repeats of the human U2 RNA genes both from cloned fragments and total human genomic DNA. The precise locations of the cleavage sites are dependent on the superhelicity of the substrate DNA. In negatively supercoiled substrates, cleavages are distributed over the entire 0.15-kb region, but in linearized substrates, they occur within a more limited region, mainly at the boundary of the SNS1 site closest to the human U2 RNA coding region. Nuclease S1 cleavage of negatively supercoiled substrates occurs at pHs as high as 7.0; in contrast, cleavage of linearized substrates requires a pH less than 5.0, indicating that supercoiling contributes to the sensitivity of this site. Mung bean nuclease gives results similar to that observed with nuclease S1.  相似文献   

11.
Oligonucleotide-targeted RNase H protection assays are powerful means to analyze protein binding domains in ribonucleoprotein particles (RNPs). In such an assay, the RNA component of a RNP and, in an essential control reaction, the corresponding deproteinized RNA are targeted with an antisense DNA oligonucleotide and RNase H. If the oligonucleotide is able to anneal to the complementary sequence of the RNA, RNase H will cleave the RNA within the double-stranded DNA/RNA region. However, protein binding to a specific RNA sequence may prevent hybridization of the DNA oligonucleotide, thereby protecting the RNA molecule from endonucleolytic cleavage. An RNase H protection analysis can usually be carried out with crude cell extract and does not require further RNP purification. On the other hand, purified RNP fractions are preferable when a crude extract contains RNase activity or a heterogenous RNP population of a specific RNA. The cleavage pattern of RNase H digestion can be analyzed by Northern blotting or primer-extension assays. In addition, the investigation of RNP fragments, for example, by native gel electrophoresis, may reveal important structural information about a RNP. In this article, we describe procedures for RNP and RNA preparation, the oligonucleotide-targeted RNase H protection assay, and methods for the analysis of RNA and RNP cleavage products. As an example, we show oligonucleotide-targeted RNase H protection of the Trypanosoma brucei U1 small nuclear RNP.  相似文献   

12.
S Turner  H F Noller 《Biochemistry》1983,22(17):4159-4164
The reagent 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) was used to cross-link 23S rRNA from Escherichia coli under 50S ribosomal subunit reconstitution conditions. Following partial digestion of the RNA with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate fragments derived from the cross-linked sites. These fragments were analyzed by digestion with ribonucleases T1 and A and their positions in the 23S RNA sequence identified. Fragment a1 (positions 1325-1426) is cross-linked to a2 (positions 1574-1623); fragment b1 (positions 1700-1731) is cross-linked to b2 (positions 1732-1753); and a cross-link is formed within fragment c (or c') (positions 863-916). In the latter case, the cross-link was located precisely, linking residues C867 and U913. All three HMT-mediated cross-links are consistent with a proposed secondary structure model for 23S RNA [Noller, H. F., Kop, J., Wheaton, V., Brosius, J., Gutell, R. R., Kopylov, A. M., Dohme, F., Herr, W., Stahl, D. A., Gupta, R., & Woese, C. R. (1981) Nucleic Acids Res. 9, 6167-6189].  相似文献   

13.
70S ribosomes from E. coli were chemically cross-linked under conditions of in vitro protein biosynthesis. The ribosomal RNAs were extracted from reacted ribosomes and separated on sucrose gradients. The 5S RNA was shown to contain the ribosomal protein L25 covalently bound. After total RNase T1 hydrolysis of the covalent RNA-protein complex several high molecular weight RNA fragments were obtained and identified by sequencing. One fragment, sequence region U103 to U120, was shown to be directly linked to the protein first by protein specific staining of the particular fragment and second by phosphor cellulose chromatography of the covalent RNA-protein complex. The other two fragments, U89 to G106 and A34 to G51, could not be shown to be directly linked to L25 but were only formed under cross-linking conditions. While the fragment U89 to G106 may be protected from RNase T1 digestion because of a strong interaction with the covalent RNA-protein complex, the formation of the fragment A34 to G51 is very likely the result of a double monovalent modification of two neighbouring guanosines in the 5S RNA. The RNA sequences U103 to U120 established to be in direct contact to the protein L25 within the ribosome falls into the sequence region previously proposed as L25 binding site from studies with isolated 5S RNA-protein complexes.  相似文献   

14.
The two sequences that define the self-cleaving elements from the genomic and antigenomic RNA of hepatitis delta virus were folded into secondary structures with similar features. Evidence in support of the two models was obtained from limited ribonuclease digestion of genomic and antigenomic RNA fragments containing the sequence 3' of the cleavage site. Under conditions where the rates of self-cleavage are enhanced by addition of 5 M urea (2-10 mM Mg2+ at 37 degrees C), ribonucleases T1, U2, A and V1 generated digestion patterns consistent with the proposed RNA structures. The evidence for a relatively stable structure in urea when Mg2+ is present suggests that denaturant-enhanced rates of self-cleavage could result from destabilization of competing inactive structures.  相似文献   

15.
16.
17.
Location of sequences on the adenovirus genome coding for the 5.5S RNA.   总被引:25,自引:0,他引:25  
The origin of a low molecular weight virus-associated RNA (VA-RNA) was mapped by hybridization of VA-RNA to specific fragments of adenovirus type 2 DNA, obtained after cleavage with three different restriction endonucleases. VA-RNA was found to hybridize exculsively to the l-strand [strand with low buoyant density in CsCl when complexed with poly(U,G)] of a segment of the viral DNA which is located between positions 0.27 and 0.32 on the unit map of the adenovirus type 2 genome.  相似文献   

18.
Cleavage of the genome RNAs of poliovirus type 1, 2 and 3 with the ribonuclease III of Escherichia coli has been investigated with the following results: (1) at or above physiological salt concentration, the RNAs are completely resistant to the action of the enzyme, an observation suggesting that the RNAs lack “primary cleavage sites”; (2) lowering the salt concentration to 0.1 m or below allows RNase III to cleave the RNAs at “secondary sites”. Both large and small fragments can be obtained in a reproducible manner depending on salt conditions chosen for cleavage. Fingerprints of three large fragments of poliovirus type 2 RNA show that they originate from unique segments and represent most if not all sequences of the genome. Based upon binding to poly(U) filters of poly(A)- linked fragments, a physical map of the large fragments of poliovirus type 2 RNA was constructed. The data suggest that RNase III cleavage of single-stranded RNA provides a useful method to fragment the RNA for further studies.  相似文献   

19.
A set of Escherichia coli 16S rRNA having unique breaks were prepared using the method of oligodeoxyribonucleotide-directed fragmentation with RNAse H. 16S RNA remained compact or dissociated to separate fragments, depending on the cleavage site location in the RNA structure. 16S rRNAs which have been split at different sites or their isolated fragments were used for a reconstitution of the 30S ribosomal subunits. These reconstituted 30S subunits carrying unique breaks at positions 301, 772, 1047 have the same sedimentation coefficients and electron microscopy images as the native subunit. They were active in the poly(U)-directed cell-free system of synthesis of polyphenylalanine.  相似文献   

20.
In vitro selection of RNAs that undergo autolytic cleavage with Pb2+.   总被引:5,自引:0,他引:5  
T Pan  O C Uhlenbeck 《Biochemistry》1992,31(16):3887-3895
An in vitro selection method has been developed to obtain RNA molecules that specifically undergo autolytic cleavage reactions by Pb2+ ion. The method utilizes a circular RNA intermediate which is regenerated following the cleavage reaction to allow amplification and multiple cycles of selection. Pb2+ is known to catalyze a specific cleavage reaction between U17 and G18 of yeast tRNA(Phe). Starting from pools of RNA molecules which have a random distribution of sequences at nine or ten selected positions in the sequence of yeast tRNA(Phe), we have isolated many RNA molecules that undergo rapid and specific self-cleavage with Pb2+ at a variety of different sites. Terminal truncation experiments suggest that most of these self-cleaving RNA molecules do not fold like tRNA. However, two of the variants are cleaved rapidly with Pb2+ at U17 even though they lack the highly conserved nucleotides G18 and G19. Both specific mutations and terminal truncation experiments suggest that the D and T loops of these two variants interact in a manner similar to that of tRNA(Phe) despite the absence of the G18U55 and G19C56 tertiary interactions. A model for an alternate tertiary interaction involving a U17U55 pair is presented. This model may be relevant to the structure of about 100 mitochondrial tRNAs that also lack G18 and G19. The selection method presented here can be directly applied to isolate catalytic RNAs that undergo cleavage in the presence of other metal ions, modified nucleotides, or sequence-specific nucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号