首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2/adenovirus E1B 19 kDa interacting protein 2 like-1 (BNIPL-1) is a novel human protein identified in our laboratory, which can interact with Bcl-2 and Cdc42GAP and induce apoptosis via the BNIP-2 and Cdc42GAP homology (BCH) domain. In the present study, we established the Hep3B-Tet-on stable cell line in which expression of BNIPL-1 can be induced by doxycycline. The cell proliferation activity assay showed that the overexpression of BNIPL-1 suppresses Hep3B cell growth in vitro. The differential expression profiles of 588 known genes from BNIPL-1-transfected Hep3B-Tet-on and vector control cells were determined using the Atlas human cDNA expression array. Fifteen genes were differentially expressed between these two cell lines, among which seven genes were up-regulated and eight genes were down-regulated by BINPL-1. Furthermore, the differential expression result was confirmed by semiquantitative RT-PCR. Among these differentially expressed genes, p16^INK4, IL-12, TRAIL and the lymphotoxin β gene involved in growth suppression or cell apoptosis were up-regulated, and PTEN involved in cell proliferation was down-regulated by BNIPL-1. These results suggest that BNIPL-1 might inhibit cell growth though cell cycle arrest and/or apoptotic cell death pathway(s).  相似文献   

2.
3.
4.
5.
6.
7.
8.
We have cloned a cDNA encoding a novel octamer binding factor Oct6 that is expressed in undifferentiated ES cells. Expression of the Oct6 gene is downregulated upon differentiation of these cells by aggregate formation. Furthermore the gene is transiently up regulated during retinoic acid induced differentiation of P19 EC cells, reaching maximum levels of expression one day after RA addition. Sequence analysis of the cDNA encoding the Oct6 protein indicated that the Oct6 gene is a member of the POU-HOMEO domain gene family. The gene expresses a 3 kb mRNA encoding a 449 amino acid protein with an apparent molecular weight of 45 kD. The sequence of the Oct6 POU domain is identical to that of the rat SCIP (Tst-1) gene. The Oct6 expression pattern suggests a role for this DNA binding protein in neurogenesis as well as early embryogenesis.  相似文献   

9.
10.
11.
Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA) regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.  相似文献   

12.
13.
14.
The endocrine pancreas is comprised of beta and alpha cells producing the glucostatic hormones insulin and glucagon, respectively, and arises during development by the differentiation of stem/progenitor cells in the foregut programmed by the beta cell lineage-specific homeodomain protein Idx-1. Brain-4 (Brn-4) is expressed in the pancreatic anlaga of the mouse foregut at e10 in the alpha cells and transactivates glucagon gene expression. We expressed Brn-4 in pancreatic precursors or beta cell lineage in transgenic mice by placing it under either Idx-1 or insulin promoter (rat insulin II promoter) control, respectively. Idx-1 expression occurs at developmental day e8.5, and insulin expression occurs at e9.5, respectively. Misexpression of Brn-4 by the Idx-1 promoter results in ectopic expression of the proglucagon gene in insulin-expressing pancreatic beta cells, whereas misexpression by rat insulin II promoter did not. The early developmental expression of Brn-4 appears to be a dominant regulator of the glucagon expressing alpha cell lineage, even in the context of the beta cell lineage.  相似文献   

15.
16.
Disruption of the protein-folding capacity in the ER induces the accumulation of unfolded proteins and ER stress, which activate the unfolded protein response (UPR). Although UPR has been extensively studied in yeast and mammals, much less is known about UPR and its relationship with light in plants. Here, we examined the effects of chemically induced UPR and light on a molecular marker of UPR (binding protein, BiP2, gene expression) and a secretory green fluorescent protein marker (GFP-2SC) that is trafficked from the ER to vacuole in Arabidopsis thaliana (L). UPR, which was induced by DTT and tunicamycin (TM), increased Bip2 mRNA levels and decreased the levels of microsomal and vacuolar forms of GFP-2SC. Treatment with protease inhibitors lessened the effects of DTT and TM on GFP-2SC, indicating the decrease in GFP levels partially involved protein degradation. Light treatments synergistically enhanced the decrease in GFP levels in both the ER and vacuole and induced the expression of UPR marker genes for BiP2 and protein disulfide isomerase (PDI, EC 5.3.4.1). DTT and TM treatments required light for maximal induction of the UPR. Light-induced UPR occurred during the daily dark to light cycle and when dark-adapted plants were exposed to light. We propose that light activates the UPR to increase the protein folding capacity in the ER to accommodate an increase in translation during dark to light transitions.  相似文献   

17.
Guanylyl cyclase C (GC-C) was found to function as the principal receptor for heat-stable enterotoxins (STa), major causative factors in E. coli-induced secretory diarrhea. GC-C is enriched in intestinal epithelium, but was also detected in other epithelial tissues. The enzyme belongs to the family of receptor guanylyl cyclases, and consists of an extracellular receptor domain, a single transmembrane domain, a kinase homology domain, and a catalytic domain. GC-C is modified by N-linked glycosylation and, at least in the small intestine, by proteolysis, resulting in a STa receptor that is coupled non-covalently to the intracellular domain. So far two endogenous ligands of mammalian GC-C have been identified i.e. the small cysteine-rich peptides guanylin and uroguanylin. The guanylins are released in an auto- or paracrine fashion into the intestinal lumen but may also function as endocrine hormones in gut-kidney communication and as regulators of ion transport in extra-intestinal epithelia. They are thought to activate GC-C by inducing a conformational change in the extracellular portion of the homotrimeric GC-C complex, which allows two of the three intracellular catalytic domains to dimerize and form two active catalytic clefts. In the intestine, activation of GC-C results in a dual action: stimulation of Cl and HCO3 secretion, through the opening of apical CFTR Cl channels; and inhibition of Na absorption, through blockade of an apical Na/H exchanger. The principal effector of the GC-C effect on ion transport is cGMP dependent protein kinase type II, which together with GC-C and the ion transporters, may form a supramolecular complex at the apical border of epithelial cells.  相似文献   

18.
We have previously demonstrated that neuroblastoma cells increase the expression of interleukin-6 by bone marrow stromal cells and that stimulation does not require cell-cell contact. In this study we report the purification and identification of a protein secreted by neuroblastoma cells that stimulates interleukin-6 production by stromal cells. Using a series of chromatographic purification steps including heparin-affinity, ion exchange, and molecular sieve chromatography followed by trypsin digestion and liquid chromatography tandem mass spectrometry, we identified in serum-free conditioned medium of neuroblastoma cells several secreted peptides including galectin-3-binding protein, also known as 90-kDa Mac-2-binding protein. We demonstrated the presence of the galectin-3-binding protein in the conditioned medium of several neuroblastoma cell lines and in chromatographic fractions with interleukin-6 stimulatory activity. Consistently, bone marrow stromal cells express galectin-3, the receptor for galectin-3-binding protein. Supporting a role for galectin-3-binding protein in stimulating interleukin-6 expression in bone marrow stromal cells, we observed that recombinant galectin-3-binding protein stimulated interleukin-6 expression in these cells and that interleukin-6 stimulation by neuroblastoma-conditioned medium was inhibited in the presence of lactose or a neutralizing anti-galectin-3 antibody. Down-regulation of galectin-3-binding protein expression in neuroblastoma cells also decreased the interleukin-6 stimulatory activity of the conditioned medium on bone marrow stromal cells. We also provide evidence that stimulation of interleukin-6 by galectin-3-binding protein involves activation of the Erk1/2 pathway. The data, thus, identifies galectin-3-binding protein as a factor secreted by neuroblastoma cells that stimulates the expression of interleukin-6 in bone marrow stromal cells and provides a novel function for this protein in cancer progression.  相似文献   

19.
The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG), stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF) and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号