首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high performance liquid chromatography (HPLC) method for the estimation of pravastatin in human plasma and urine samples has been developed. The preparation of the samples was performed by automated solid phase extraction using clonazepam as internal standard. The compounds were separated by isocratic reversed-phase HPLC (C(18)) and detected at 239 nm. The method was linear up to concentrations of 200 ng/ml in plasma and 2000 ng/ml in urine. The intra-assay variability for pravastatin in plasma ranged from 0.9% to 3.5% and from 2.5% to 5.3% in urine. The inter-assay variability ranged from 9.1% to 10.2% in plasma and from 3.9% to 7.5% in urine. The validated limits of quantification were 1.9 ng/ml for plasma and 125 ng/ml for urine estimation. These method characteristics allowed the determination of the pharmacokinetic parameters of pravastatin after administration of therapeutic doses.  相似文献   

2.
A rapid and sensitive high-performance liquid chromatographic method was validated and described for determination of atorvastatin in human serum. Following liquid-liquid extraction of the drug and an internal standard (sodium diclofenac), chromatographic separation was accomplished using C18 analytical column with a mobile phase consisting of sodium phosphate buffer (0.05 M, pH 4.0) and methanol (33:67, v/v). Atorvastatin and the internal standard were detected by ultraviolet absorbance at 247 nm. The average recoveries of the drug and internal standard were 95 and 80%, respectively. The lower limits of detection and quantification were 1 and 4 ng/ml, respectively, and the calibration curves were linear over a concentration range of 4-256 ng/ml of atorvastatin in human serum. The analysis performance was studied and the method was applied in a randomized cross-over bioequivalence study of two different atorvastatin preparations in 12 healthy volunteers.  相似文献   

3.
A HPLC method with UV detection at 262nm was developed to analyze inositol hexanicotinate in rat plasma. Plasma samples were extracted with an equal volume of acetonitrile, followed by dilution with mobile phase buffer (5mM phosphate buffer, pH 6.0) to eliminate any solvent effects. Inositol hexanicotinate and the internal standard (mebendazole) were separated isocratically using a mobile phase of acetonitrile/phosphate buffer (35:65, v/v, pH 6.0) at a flow rate of 1.0mL/min and a reverse-phase XTerra MS C(18) column (4.6mmx150mm, 3.5microm). The standard curve was linear over a concentration range of 1.5-100.0microg/mL of inositol hexanicotinate in rat plasma. The HPLC method was validated with intra- and inter-day precisions of 1.55-4.30% and 2.69-21.5%, respectively. The intra- and inter-day biases were -0.75 to 19.8% and 2.58-22.0%, respectively. At plasma concentrations of 1.5-100microg/mL, the mean recovery of inositol hexanicotinate was 99.6%. The results of a stability study indicated that inositol hexanicotinate was unstable in rat plasma samples, but was stable in acetonitrile extracts of rat plasma for up to 24h at 4 degrees C. The assay is simple, rapid, specific, sensitive, and reproducible and has been used successfully to analyze inositol hexanicotinate plasma concentrations in a pharmacokinetic study using the rat as an animal model.  相似文献   

4.
Liquid phase microextraction by back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC)-fluorescence detection was developed for the determination of tramadol in human plasma. Tramadol was extracted from 2 mL of basic sample solution (donor phase) with pH 11.5 through a micro liter-size organic solvent phase (100 microL n-octane) for 25 min and finally into a 3.5 microL acidic aqueous acceptor microdrop with pH 2.5 suspended in the organic phase from the tip of a HPLC microsyringe needle for 15 min with the stirring rate of 1250 rpm. After extraction for a period of time, the microdrop was taken back into the syringe and injected into HPLC. Effected the experimental parameters such as the nature of the extracting solvent and its volume, sample temperature, stirring rate, volume of the acceptor phase, pH and extraction time on LPME-BE efficiency was investigated. At the optimized condition, enrichment factor of 366 and detection limit (LOD) of 0.12 microg L(-1) were obtained. The calibration curve was linear (r=0.999) in the concentration range of 0.3-130 microg L(-1). Within-day relative standard deviation RSD (S/N=3) and between-day RSD were 3.16% and 6.29%, respectively. The method was successfully applied to determine the concentration of tramadol in the plasma and urine samples and satisfactory results were obtained.  相似文献   

5.
High performance liquid chromatography was coupled with UV detection for simultaneous quantification of lopinavir (LPV) and ritonavir (RTV) in human plasma. This assay was sensitive, accurate and simple, and only used 200 μL of plasma sample. Samples were liquid-liquid extracted, and diazepam was used as an internal standard. The chromatographic separation was achieved on a C18 reversed-phase analytic column with a mobile phase of acetonitrile-sodium dihydrogen phosphate buffer (10 mmol L−1, pH 4.80) (60:40, v/v). UV detection was conducted at 205 nm and the column oven was set at 40°C. Calibration curves were constructed between 0.5–20 μg mL−1 for LPV and 0.05–5 μg mL−1 for RTV. The relative standard deviations were 2.16%–3.20% for LPV and 2.12%–2.60% for RTV for intra-day analysis, and 2.34%–4.04% for LPV and 0.31%–4.94% for RTV for inter-day analysis. The accuracy was within 100%±10%. The mean extraction recoveries were 79.17%, 52.26% and 91.35% for RTV, LPV and diazepam, respectively. This method was successfully applied to human plasma samples from patients orally administered a salvage regimen of lopinavir-ritonavir tablets.  相似文献   

6.
A rapid and simple high-performance liquid chromatographic method for the determination of the R-(-)- and S-(+)-enantiomers of the antiepileptic drug vigabatrin in human plasma is described. After adding the internal standard (1-aminomethyl-cycloheptyl-acetic acid), plasma samples (200 microL) are deproteinized with acetonitrile and the supernatant is derivatized with 2,4,6 trinitrobenzene sulfonic acid (TNBSA). Separation is achieved on a reversed-phase cellulose-based chiral column (Chiralcel-ODR, 250 mm x 4.6 mm i.d.) using 0.05 M potassium hexafluorophosphate (pH 4.5)/acetonitrile/ethanol (50:40:10 vol/vol/vol) as mobile phase at a flow-rate of 0.9 mL/min. Chromatographic selectivity is improved by concentrating the derivatives on High Performance Extraction Disk Cartridges prior to injection. Detection is at 340 nm. Calibration curves are linear (r(2)> or =0.999) over the range of 0.5-40 microg/mL for each enantiomer, with a limit of quantification of 0.5 microg/mL for both analytes. The assay is suitable for therapeutic drug monitoring and for single-dose pharmacokinetic studies in man.  相似文献   

7.
Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis.  相似文献   

8.
Epitestosterone (ET) has been used as a masking agent and prohibited by the World Anti-Doping Agency (WADA) because its administration will decrease the urinary T/ET ratio, a marker of testosterone (T) administration. In this study, an off-line immunoaffinity extraction coupled with high performance liquid chromatography (HPLC) was developed to quantify the endogenous steroid ET in human urine. The immunoaffinity column (IAC) was prepared by immobilizing the anti-ET monoclonal antibodies on CNBr-activated Sepharose 4B, which can remove the contaminations and non-target compounds from matrix to enrich the target analyte ET. The mobile phase was ammonium acetate (10 mM, pH 4.0)/acetonitrile (45/55, v/v) at an isocratic flow of 1.0 mL/min and the UV absorbance detection wavelength was 244 nm for the detection of ET. The IAC showed good reliability and durability since it had been used for more than 100 runs in a year. The limit of quantification (LOQ) was 1 ng/mL. Satisfied repeatability and precision of the day-to-day and within-day were obtained with the RSD values less than 10%. Results of the recovery of the urine samples were ranged from 98% to 102% with repeatability less than 9%, indicating that the method developed can be used for the real urine sample analysis.  相似文献   

9.
J Yamada  Y Sugimoto  K Horisaka 《Life sciences》1983,33(20):2043-2047
A simple and sensitive method using high performance liquid chromatography with fluorometric detection has been developed for the identification and quantitation of the endogeneous tryptamine metabolites, indoleacetic acid (IAA) and tryptophol (TOL) in the normal mouse brain. The limits of sensitivity are 5pg for both IAA and TOL. The extract procedure from the brain is only to deproteinize samples. The mean concentrations of IAA and TOL in the mouse brain are 8.99 +/- 0.31 ng/g and 3.56 +/- 0.21 ng/g respectively. The effects of pargyline and tryptamine on the levels of IAA and TOL were also studied.  相似文献   

10.
Puerarin, an isoflavone C-glycoside, has been identified as the major active component isolated from Pueraria lobata (Kudzu) responsible for suppression of alcohol drinking. In order to conduct clinical studies of Kudzu's efficacy, a method for measuring its bioavailability and pharmacokinetic profile is needed. We have developed a gradient reversed-phase HPLC system for pharmacokinetic study of puerarin in human plasma. Solid-phase extraction was performed on an abselut Nexus cartridge (60 mg/3 ml) possessing adsorbent function with a recovery of >97% and 4-hydroxybenzoic acid was used as an internal standard. The HPLC assay was performed on a YMC ODS-A column (150 mm x 4.6mm i.d., 5 microm particle size). The HPLC mobile phase consisted of methanol/0.5% acetic acid with 20-35% methanol gradient at a flow-rate of 0.8 ml/min. The UV wavelength was set at 254 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a puerarin concentration range of 5-500 ng/ml in human plasma. The lower limit of quantification was ca. at 8 ng/ml of puerarin in plasma. The detection limit (defined as signal-to-noise ratio of about 3) was approximately 3 ng/ml. The preliminary pharmacokinetic study after oral administration of the Kudzu capsules containing 400mg of puerarin to a healthy volunteer confirmed that the present method was suitable for determining puerarin in human plasma.  相似文献   

11.
A new, simple and rapid high-performance liquid chromatography (HPLC) method with UV detection has been developed for the determination of apovincaminic acid in human plasma. Apovincaminic acid and internal standard were isolated from plasma samples by solid-phase extraction with OASIS HLB cartridges. The chromatographic separation was accomplished on a reversed-phase C(18) column and UV detection was set at 311 nm. The calibration curves were linear in the concentration range of 2.4-240.0 ng/ml, and the limits of quantification was 2.4 ng/ml. The precision and accuracy ranged from 0.84 to 8.54% and 91.5 to 108.3%, respectively. The developed method was subsequently applied to study the pharmacokinetics of apovincaminic acid in a group of 20 human subjects at a single oral dose of 10mg of vinpocetine tablet.  相似文献   

12.
13.
A simple and sensitive HPLC method for the determination of gatifloxacin concentrations in human serum and urine was developed and validated. Serum proteins were removed by ultrafiltration through a filtering device after adding a displacing agent. Urine samples were diluted with mobile phase prior to injection. Separation was achieved with a C18 reverse-phase column and gatifloxacin concentrations were determined using ultraviolet detection. The quantitation limits of the assay were 100 ng/ml in serum and 1.0 microg/ml in urine. The assay method was successfully applied to a pharmacokinetic study of gatifloxacin in healthy volunteers.  相似文献   

14.
15.
A selective and sensitive method for the determination of lipoic acid in human plasma samples has been developed. After enzymatic hydrolysis of the sample, the liberated lipoic acid was extracted by a solid-phase cartridge and measured by HPLC using electrochemical detection. The detection limit was 1 ng/ml lipoic acid in plasma. The calibration curve was non-linear in the range 0.01–50 μg/ml but could be described by a power function. The average extraction recoveries were 82.5 and 85.1% at the 25 and 2500 ng/ml levels, respectively. Coefficients of variation for both within-day and day-to-day analysis were between 2.1 and 9.4%. The assay method is sensitive, reproducible and suitable for disposition studies of lipoic acid in humans.  相似文献   

16.
A method for the simultaneous determination of +S and -R arotinolol in serum by micellar electrokinetic capillary chromatography is described. Stereoselective resolution of the arotinolol enantiomers was achieved using 5 mM sodium taurocholate in 10 mM sodium dihydrogen phosphate buffer of pH 2.5. A 72-cm uncoated fused-silica capillary at a constant voltage of 15 kV was used for the analysis. The analytes of interest were extracted from serum using solid phase extraction. An octadecyl cartridge gave good recoveries in excess of 87% for both +S and -R arotinolol without any interference. The calibration curves were linear over the range of 50-500 ng ml(-1) with +S propranolol as the internal standard and the coefficient of determination was greater than 0.999 (n = 3). The limit of quantitation was 50 ng ml(-1) for each enantiomer and the detection limit using 1 ml serum and a UV detection set et 220 nm was 25 ng ml(-1) (S/N = 2). Precision and accuracy of the method were in the range 0.8-2.7% and 1.2-6.4%, respectively, for +S arotinolol and 1.1-3.9% and 2.2-6.5%, respectively, for -R arotinolol.  相似文献   

17.
18.
A HPLC method with UV detection (210 nm) was developed and validated for the quantification of atomoxetine, a new medication for the treatment of attention deficit/hyperactivity disorder, in human plasma. Following a two-step liquid-liquid extraction with diethyl ether, the analyte and internal standard (maprotiline) were separated using an isocratic mobile phase of acetonitrile/phosphate buffer (39/61, v/v, pH 6.6) on a reverse phase Inertsil C(18) column. Linearity was verified over the range of 3.12-200 ng/mL atomoxetine in plasma. The lowest limit of detection is 2.5 ng/mL (S/N=10). This HPLC method was validated with within- and between-batch precisions of 4.9-14.4% and 4.7-13.1%, respectively. The within- and between-batch biases were -1.9 to 1.4% and 0.1-13.8%, respectively. Commonly used psychotropic drugs and frequently coadministered drugs did not interfere with the drug and internal standard. This method is simple, economical and specific, and has been used successfully in a pharmacokinetic study of atomoxetine.  相似文献   

19.
Dextromethorphan is an effective and safe antitussive, but has liabilities with respect to its abuse potential at doses above the therapeutic dose. At these higher doses, people report phencyclidine-like effects from the drug. A number of animal models have suggested that dextrorphan, an active metabolite of dextromethorphan, is responsible for the abuse liability of the parent compound when dextromethorphan is taken at high doses. Full pharmacokinetic profiles in single animals have not been demonstrated in these studies due to a lack of analytical sensitivity and/or selectivity for dextromethorphan and its metabolites. We have developed a low-cost liquid chromatographic method capable of characterizing the concentration-time profile for dextromethorphan and dextrorphan for 8 h in rats following an 18 mg/kg i.p. dose of dextromethorphan. Limits of quantitation (S/N=10) in 100 microL of serum were 0.25, 0.19, 0.27, and 0.22 nmol/mL for 3-hydroxymorphinan, dextrorphan, 3-methoxymorphinan, and dextromethorphan, respectively. Inter-day precision was better than 11% across the dynamic range of the method.  相似文献   

20.
A selective and sensitive high-performance liquid chromatography method has been developed and validated for determination of mitiglinide (MGN) in rat plasma using 2-(4-biphenylyl) propionic acid (BPA) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a C(18) column using acetonitrile and 0.02 mol/l KH(2)PO(4) buffer (pH 4.0) (45:55, v/v) as mobile phase delivered at 1.0 ml/min. The UV detector was set at 210 nm. The assay was linear over the range 0.1-20 microg/ml for MGN. The average extraction recoveries of MGN and BPA from rat plasma were 98.6 and 97.4%, respectively. The developed method has been applied to the pharmacokinetic study of MGN in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号