首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the regulation of central histaminergic (HAergic) activity by cholinergic receptors, the effects of drugs that stimulate the cholinergic system on brain histamine (HA) turnover were examined, in vivo, in mice and rats. The HA turnover was estimated from the accumulation of tele-methylhistamine (t-MH) during the 90-min period after administration of pargyline (65 mg/kg, i.p.). In the whole brain of mice, oxotremorine, at doses higher than 0.05 mg/kg, s.c., significantly inhibited the HA turnover, this effect being completely antagonized by atropine but not by methylatropine. A large dose of nicotine (10 mg/kg, s.c.) also significantly inhibited the HA turnover. This inhibitory effect was antagonized by mecamylamine but not by atropine or hexamethonium. A cholinesterase inhibitor, physostigmine, at doses higher than 0.1 mg/kg, s.c., significantly inhibited the HA turnover. This effect was antagonized by atropine but not at all by mecamylamine. None of these cholinergic antagonists used affected the steady-state t-MH level or HA turnover by themselves. In the rat brain, physostigmine (0.1 and 0.3 mg/kg, s.c.) also decreased the HA turnover. This inhibitory effect of physostigmine was especially marked in the striatum and cerebral cortex where muscarinic receptors are present in high density. Oxotremorine (0.2 mg/kg, s.c.) and nicotine (1 mg/kg, s.c.) also decreased the HA turnover in the rat brain. However, these effects showed no marked regional differences. These results suggest that the stimulation of central muscarinic receptors potently inhibits the HAergic activity in the brain and that strong stimulation of central nicotinic receptors can also induce a similar effect.  相似文献   

2.
To study the feedback control by histamine (HA) H3-receptors on the synthesis and release of HA at nerve endings in the brain, the effects of a potent and selective H3-agonist, (R)-alpha-methylhistamine, and an H3-antagonist, thioperamide, on the pargyline-induced accumulation of tele-methylhistamine (t-MH) in the brain of mice and rats were examined in vivo. (R)-alpha-Methylhistamine dihydrochloride (6.3 mg free base/kg, i.p.) and thioperamide (2 mg/kg, i.p.), respectively, significantly decreased and increased the steady-state t-MH level in the mouse brain, whereas these compounds produced no significant changes in the HA level. When administered to mice immediately after pargyline (65 mg/kg, i.p.), (R)-alpha-methylhistamine (3.2 mg/kg, i.p.) inhibited the pargyline-induced increase in the t-MH level almost completely during the first 2 h after treatment. Thioperamide (2 mg/kg, i.p.) enhanced the pargyline-induced t-MH accumulation by approximately 70% 1 and 2 h after treatment. Lower doses of (R)-alpha-methylhistamine (1.3 mg/kg) and thioperamide (1 mg/kg) induced significant changes in the pargyline-induced t-MH accumulation in the mouse brain. In the rat, (R)-alpha-methylhistamine (3.2 mg/kg, i.p.) and thioperamide (2 mg/kg, i.p.) also affected the pargyline-induced t-MH accumulation in eight brain regions and the effects were especially marked in the cerebral cortex and amygdala. These results indicate that these compounds have potent effects on HA turnover in vivo in the brain.  相似文献   

3.
The effect of acute ethanol administration on histamine (HA) dynamics was examined in the mouse hypothalamus. The steady-state level of HA did not change after intraperitoneal administration of ethanol (0.5-5 g/kg), whereas the level of tele-methylhistamine (t-MH), a predominant metabolite of brain HA, increased when 3 and 5 g/kg of ethanol was given. Pargyline hydrochloride (80 mg/kg, i.p.) increased the level of t-MH by 72.2% 90 min after the treatment. Ethanol at any dose given did not significantly affect the t-MH level in the pargyline-pretreated mice. Decrease in the t-MH level induced by metoprine (10 mg/kg, i.p.), an inhibitor of HA-N-methyltransferase, was suppressed by ethanol (5 g/kg), thereby suggesting inhibition of the elimination of brain t-MH. Ethanol (5 g/kg) significantly delayed the depletion of HA induced by (S)-alpha-fluoromethylhistidine (50 mg/kg, i.v.), a specific inhibitor of histidine decarboxylase. Therefore, a large dose of ethanol apparently decreases HA turnover in the mouse hypothalamus.  相似文献   

4.
Circadian changes in the brain histamine (HA) and tele-methylhistamine (t-MH) levels were studied in mice and rats after adaptation to an alternating 12-h light/dark cycle (lights on at 0600). Although there was no significant circadian fluctuation of the brain HA levels, the levels of t-MH, a major metabolite of brain HA, showed a marked circadian variation. In mice, the t-MH levels were about 80 ng/g from 1200 to 1800 but about two times higher values were obtained from 2400 to 0600 of the next morning. In rats, the t-MH levels ranged from 24 to 28 ng/g at 0600 and 1200, slightly increased at 1800, and reached at 2400 a peak twice as high as the levels seen during the light period. The t-MH levels again rapidly decreased during the subsequent 3 h. In mice fasted from 1200, the t-MH levels did not increase during the period of darkness. When mice were fed at 1200 after a 24-h fast, a significant increase in the t-MH levels was observed at 1800. There was no significant circadian variation of the HA and t-MH levels in the plasma of mice and rats. These results suggest that circadian variation in brain t-MH levels is related to feeding and possible subsequent changes in elimination of t-MH from the brain and/or turnover of HA in the brain. This phenomenon should be given due attention when HA dynamics in the brain are being assessed.  相似文献   

5.
Morphine-Induced Changes in Histamine Dynamics in Mouse Brain   总被引:5,自引:5,他引:0  
The effect of the acute morphine treatment on histamine (HA) pools in the brain and the spinal cord was examined in mice. Morphine (1-50 mg/kg, s.c.) administered alone caused no significant change in the steady-state levels of HA and its major metabolite, tele-methylhistamine (t-MH), in the brain. However, depending on the doses tested, morphine significantly enhanced the pargyline (65 mg/kg, i.p.)-induced accumulation of t-MH and this effect was antagonized by naloxone. A specific inhibitor of histidine decarboxylase, alpha-fluoromethylhistidine (alpha-FMH) (50 mg/kg, i.p.), decreased the brain HA level in consequence of the almost complete depletion of the HA pool with a rapid turnover. Morphine further decreased the brain HA level in alpha-FMH-pretreated mice. Morphine administered alone significantly reduced the HA level in the spinal cord, an area where the turnover of HA is very slow. These results suggest that the acute morphine treatment increases the turnover of neuronal HA via opioid receptors, and this opiate also releases HA from a slowly turning over pool(s).  相似文献   

6.
Leptin regulates feeding behavior and energy metabolism by affecting hypothalamic neuromodulators. The present study was designed to examine hypothalamic neuronal histamine, a recently identified mediator of leptin signaling in the brain, in genetic obese animals. Concentrations of hypothalamic histamine and tele-methylhistamine (t-MH), a major histamine metabolite, were significantly lower in obese (ob/ob) and diabetic (db/db) mice, and Zucker fatty (fa/fa) rats, leptin-deficient and leptin-receptor defective animals, respectively, relative to lean littermates (P < 0.05 for each). A bolus infusion of leptin (1.0 microg) into the lateral ventricle (ilvt) significantly elevated the turnover rate of hypothalamic neuronal histamine, as assessed by pargyline-induced accumulation of t-MH, in ob/ob mice compared with phosphate-buffered saline (PBS) infusions (P < 0.05). However, this same treatment did not affect hypothalamic histamine turnover in db/db mice. In agouti yellow (A(y)/a) mice, animals defective in pro-opiomelanocortin (POMC) signaling, normal levels of histamine, and t-MH were seen in the hypothalamus at 4 weeks of age when obesity had not yet developed. These amine levels in A(y)/a mice showed no change until 16 weeks of age, although the mice were remarkably obese by this time. Infusions of corticotropin releasing hormone (CRH), one of neuropeptide related to leptin signaling, into the third ventricle (i3vt) increased histamine turnover in the hypothalamus of Wistar King A rats (P < 0.05 versus PBS infusion). Infusion of neuropeptide Y (NPY) or alpha-melanocyte stimulating hormone (MSH), a POMC-derived peptide failed to increase histamine turnover. These results indicate that lowered activity of hypothalamic neuronal histamine in ob/ob and db/db mice, and fa/fa rats may be due to insufficiency of leptin action in the brains of these animals. These results also suggest that disruption of POMC signaling in A(y)/a mice may not impact on neuronal histamine. Moreover, CRH but neither POMC-derived peptide nor NPY may act as a signal to neuronal histamine downstream of the leptin signaling pathway.  相似文献   

7.
Regional differences in the turnover of neuronal histamine in the rat brain   总被引:16,自引:0,他引:16  
The turnover rate of histamine (HA) and the half-life of neuronal HA were estimated in 9 regions of the rat brain following pargyline-induced accumulation of tele-methylhistamine (t-MH). The turnover rate was the highest in the hypothalamus (108.7 ng/g/hr). The striatum also showed a high turnover rate (80.2 ng/g/hr) despite much lower levels of HA and t-MH, as compared with the levels in the hypothalamus. The turnover rate was relatively high in the thalamus, cerebral cortex, amygdala and midbrain, but it was very low in the cerebellum. t-MH accumulation in the spinal cord was nil. The HA levels were reduced to various degrees (from nil to less than 40% of the control) by (S)-alpha-fluoromethylhistidine, depending on the regions studied. The neuronal HA content of each brain region was subsequently estimated, and the half-life of neuronal HA in each region was calculated. The half-life of neuronal HA was the shortest (7.7 min) in the striatum, while it was long (about 50 min) in the hypothalamus and thalamus. Half-life values of about 20 min were obtained in other regions. These results show the high levels of histaminergic activity in some parts of the telencephalon, thalamus and midbrain as well as the hypothalamus.  相似文献   

8.
The turnover of neuronal histamine (HA) in nine brain regions and the spinal cord of the guinea pig and the mouse was estimated and the values obtained were compared with data previously obtained in rats. The size of the neuronal HA pool was determined from the decrease in HA content, as induced by (S)-alpha-fluoro-methylhistidine (alpha-FMH), a suicide inhibitor of histidine decarboxylase. The ratios of neuronal HA to the total differed with the brain region. Pargyline hydrochloride increased the tele-methylhistamine (t-MH) levels linearly up to 2 h after administration in both the guinea pig and the mouse whole brain. Regional differences in the turnover rate of neuronal HA, calculated from the pargyline-induced accumulation of t-MH, as well as in the size of the neuronal HA pool, were more marked in the mouse than in the guinea pig brain. The hypothalamus showed the highest rate in both species. There was a good correlation between the steady-state t-MH levels and the turnover rate in different brain regions. Neither the elevation of the t-MH levels by pargyline nor the reduction of HA by alpha-FMH was observed in the spinal cord, thereby suggesting that the HA present in this region is of mast cell origin. The half-life of neuronal HA in different brain regions was in the range of 13-38 min for the mouse and 24-37 min for the guinea pig, except for HA from the guinea pig hypothalamus, which had an extraordinarily long value of 87 min. These results suggest that there are species differences in the function of the brain histaminergic system.  相似文献   

9.
An HPLC method using fluorescence detection for the determination of tele-methylhistamine (t-MH) was improved to a sensitivity level which enabled the detection of 0.05 pmol of tissue t-MH. The t-MH contents and the histamine turnover rates in various nuclei of the rat hypothalamus and amygdala were subsequently measured. The histamine turnover rates were estimated from pargyline-induced t-MH accumulation. Both the t-MH levels and the histamine turnover rates were shown to be relatively high in the nuclei dorsomedialis and premammillaris ventralis of the hypothalamus, and also in the nucleus medialis of the amygdala. The steady-state t-MH levels in various nuclei of the hypothalamus and amygdala correlated well with the histamine turnover rates in these nuclei.  相似文献   

10.
Abstract: In mammalian brain, histamine is known to be metabolized solely by histamine methyltransferase (HMT), forming tele -methylhistamine (t-MH), then tele -methylimidazoleacetic acid (t-MIAA). We previously showed that imidazoleacetic acid (IAA), a GABA agonist, and histamine's metabolite in the periphery, is present in brain where its concentration increased after inhibition of HMT. Also, when [3H]histamine was given intracerebroventricularly to rats, a portion was converted to IAA, a process increased by inhibition of HMT. These results indicated that brain has the capacity to oxidize histamine but did not show whether this pathway is operative under physiological conditions. To address this question, rats were infused for >4 weeks with α-fluoromethylhistidine (α-FMHis), an irreversible inhibitor of histamine's synthetic enzyme, l -histidine decarboxylase. Compared with controls (untreated and saline-treated rats), brain levels of histamine, t-MH, and t-MIAA in all regions were markedly reduced in treated rats. As a percentage of controls, depletion of t-MIAA > t-MH > histamine in all regions, and regional depletions of histamine corresponded to its turnover rates in regions of rat brain. In contrast, levels of IAA were unchanged as were levels of pros -methylimidazoleacetic acid, an isomer of t-MIAA unrelated to histamine metabolism. Results suggest that in brains of rats, unlike in the periphery, most IAA may not normally derive from histamine. Because histamine in brain can be converted to IAA under certain conditions, direct oxidation of histamine may be a conditional phenomenon. Our results also support the existence of a very slow turnover pool of brain histamine and use of chronic α-FMHis infusion as a model to probe the histaminergic system in brain.  相似文献   

11.
We examined the involvement of thyrotropin-releasing hormone (TRH) and TRH type 1 and 2 receptors (TRH-R1 and TRH-R2, respectively) in the regulation of hypothalamic neuronal histamine. Infusion of 100 nmol TRH into the rat third cerebroventricle (3vt) significantly decreased food intake (p < 0.05) compared to controls infused with phosphate- buffered saline. This TRH-induced suppression of food intake was attenuated partially in histamine-depleted rats pre-treated with alpha-fluoromethylhistidine (a specific suicide inhibitor of histidine decarboxylase) and in mice with targeted disruption of histamine H1 receptors. Infusion of TRH into the 3vt increased histamine turnover as assessed by pargyline-induced accumulation of tele-methylhistamine (t-MH, a major metabolite of neuronal histamine in the brain) in the tuberomammillary nucleus (TMN), the paraventricular nucleus, and the ventromedial hypothalamic nucleus in rats. In addition, TRH-induced decrease of food intake and increase of histamine turnover were in a dose-dependent manner. Microinfusion of TRH into the TMN increased t-MH content, histidine decarboxylase (HDC) activity and expression of HDC mRNA in the TMN. Immunohistochemical analysis revealed that TRH-R2, but not TRH-R1, was expressed within the cell bodies of histaminergic neurons in the TMN of rats. These results indicate that hypothalamic neuronal histamine mediates the TRH-induced suppression of feeding behavior.  相似文献   

12.
实验性糖尿病小鼠的血清氨基酸代谢谱   总被引:1,自引:0,他引:1  
目的通过测定2型糖尿病小鼠血清氨基酸代谢谱的变化,探讨代谢轮廓分析结合模式识别技术在糖尿病动物模型中的应用。方法 SPF级雄KM小鼠高脂饲料喂养4周后,腹腔注射链脲菌素(streptozotocin,STZ)建立2型糖尿病模型,动态监测空腹血糖(FBG)变化,分别于造模后第4周处死,收集小鼠血清,检测甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)水平。采用高效液相色谱(HPLC)柱前衍生方法检测小鼠血清中氨基酸代谢谱的变化。结果 2型糖尿病小鼠FBG、TG、TC明显升高,差异均有显著性。利用代谢轮廓分析可以对模型组大鼠代谢谱与对照组完全区分。结论小鼠成模后体内氨基酸发生了明显变化。从差异变量中鉴定出4个氨基酸对组间贡献较大(精氨酸、苯丙氨酸、赖氨酸、牛磺酸)。氨基酸的代谢轮廓分析结合模式识别技术可以在一定程度上反映2型糖尿病小鼠的代谢变化。  相似文献   

13.
High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.  相似文献   

14.
Because it appears that oxidative stress and inflammation are implicated with disease pathogenesis in the diabetic brain, many researchers have used streptozotocin (STZ)-induced diabetic animals to study superoxide production and the effects of superoxide scavengers like Cu,Zn-superoxide dismutase (SOD1). However, many studies have been conducted without considering temporal changes after STZ injection. Interestingly, though SOD activities were not significantly different among the groups, SOD1 and 4-hydroxy-2-nonenal (4-HNE) immunoreactivities were significantly enhanced at 3 weeks after an STZ injection (STZ3w) versus only marginal levels in sham controls, whereas microglial activity was remarkably reduced in injected rats at this time. However, SOD1 immunoreactivity and microglial activities were only at the sham level at STZ4w. The present study provides important information concerning cell damage by ROS generated by STZ. Microglial response was found to be inactivated at STZ3w and neuronal cells (NeuN) showed a non-significant tendency to be reduced in number at STZ4w except in the dentate gyrus. We speculated that the above oxidative stress-related events should be accomplished at STZ3w in the brains of STZ-induced diabetes animal models. Therefore, the aim of the present study was to investigate chronological changes in SOD1 immunoreactivity associated with lipid peroxidation and inflammatory responses in the hippocampi of STZ-induced type I diabetic rats.  相似文献   

15.
目的:探讨下丘脑nesfatin-1与组胺信号通路间的相互作用及对摄食的影响。方法:采用第三脑室置管、药物注射、免疫组化、ELISA等方法,观察氟甲基组氨酸(FMH)、α螺旋促肾上腺皮质激素释放激素(CRH)和促甲状腺激素释放激素(TRH)对Nesfatin-1诱导的抑制摄食的影响,以及Nesfatin-1与组胺信号通路相互影响调控摄食机制。结果:第三脑室注射nesfatin-1可显著减少大鼠摄食量,而第三脑室内预先注射FMH,nesfatin-1抑制摄食效应明显减弱,但FMH本身并不影响大鼠夜间摄食量。第三脑室注射nesfatin-1,可显著增加优降宁诱发的PVN、腹内侧核(VMH)、结节乳头核(TMN)内t-MH的积累;但腹腔注射nesfatin-1没有引起大鼠摄食改变,t-MH蓄积也无显著变化。第三脑室注射α螺旋CRH或抗TRH血清均可显著减弱nesfatin-1的抑食效应,而α螺旋CRH、抗TRH血清本身并不显著影响大鼠摄食量。第三脑室注射nesfatin-1可显著增加下丘脑PVN内CRH和TRH水平,且nesfatin-1可显著增加优降宁诱导的PVN、VMH和TMN内t-MH的表达,而α螺旋CRH或抗TRH血清可显著抑制nesfatin-1诱导的PVN、VMH和TMH内t-MH的蓄积。第三脑室注射组胺可显著增加大鼠下丘脑PVN内nesfatin-1含量,但LH、VMH、TMN以及血浆内nesfatin-1水平无显著改变。免疫组化研究显示,PVN内有nesfatin-1和H1-R免疫反应阳性神经元,且部分神经元共存。结论:Nesfatin-1的抑食效应可能与下丘脑组胺信号通路介导。  相似文献   

16.
The aim of this study was to examine: the 24 h variation of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase activities, key enzymes for the maintenance of intracellular NADPH concentration, in rat liver in control and streptozotocin-induced diabetic animals. Adult male rats were fed ad libitum and synchronized on a 12:12 h light-dark cycle (lights on 08:00 h). One group of animals was treated with streptozotocin (STZ, 55 mg/kg, intraperitoneal) to induce experimental diabetes. Eight weeks after STZ injection, the animals were sacrificed at six different times of day—1, 5, 9, 13, 17 and 21 Hours After Lights On (HALO)—and livers were obtained. Enzyme activities were determined spectrophotometrically in triplicate in liver homogenates and expressed as units per mg protein. 6-phosphogluconate dehydrogenase activity was measured by substituting 6-phosphogluconate as substrate. Glucose-6-phosphate dehydrogenase activity was determined by monitoring NADPH production. Treatment, circadian time, and interaction between treatment and circadian time factors were tested by either one or two way analysis of variance (ANOVA). Two-way ANOVA revealed that 6-phosphogluconate dehydrogenase activity significantly depended on both the treatment and time of sacrifice. 6-phosphogluconate dehydrogenase activity was higher in control than diabetic animals; whereas, glucose-6-phosphate dehydrogenase activity did not vary over the 24 h in animals made diabetic by STZ treatment. Circadian variation in the activity of 6-phosphogluconate dehydrogenase was also detected in both the control and STZ treatment groups (one-way ANOVA). Time-dependent variation in glucose-6-phosphate dehydrogenase activity during the 24 h was detected in control but not in diabetic rats. No significant interaction was detected between STZ-treatment and time of sacrifice for both hepatic enzyme activities. These results suggest that the activities of NADPH-generating enzymes exhibit 24 h variation, which is not influenced by diabetes.  相似文献   

17.
Abstract: Levels of histamine and its major metabolites in brain, tele -methylhistamine (t-MH) and tele -methylimidazoleacetic acid (t-MIAA), were measured in rat brains up to 12 h after intraperitoneal administration of l -histidine (His), the precursor of histamine. Compared with saline-treated controls, mean levels of histamine were elevated at 1 h (+ 102%) after a 500 mg/kg dose; levels of t-MH did not increase. Following a 1,000 mg/kg dose; levels mean histamine levels were increased for up to 7 h, peaked at 3 h, and returned to control levels within 12 h. In contrast, levels of t-MH showed a small increase only after 3 h; levels of t-MIAA remained unchanged after either dose. Failure of most newly formed histamine to undergo methylation, its major route of metabolism in brain, suggested that histamine was metabolized by another mechanism possibly following nonspecific decarboxylation. To test this hypothesis, other rats were injected with α-fluoromethylhistidine (α-FMHis; 75 mg/kg, i.p.), an irreversible inhibitor of specific histidine decarboxylase. Six hours after rats received α-FMHis, the mean brain histamine level was reduced 30% compared with saline-treated controls. Rats given His (1,000 mg/kg) 3 h after α-FMHis (75 mg/kg) and examined 3 h later had a higher (+112%) mean level of histamine than rats given α-FMHis, followed by saline. Levels of t-MH and t-MIAA did not increase. These results imply that high doses of His distort the simple precursor-product relationship between histamine and its methylated metabolites in brain. The possibility that some His may undergo nonspecific decarboxylation in brain after His loading is discussed. These findings, and other actions of His independent of histamine, raise questions about the validity of using His loading as a specific probe of brain histaminergic function.  相似文献   

18.
The effects of genetic selection for high wheel running (13th generation) and prolonged access (8 weeks) to running wheels on food consumption and body composition were studied in house mice (Mus domesticus). Mice from four replicate lines selected for high wheel-running activity ran over twice as many revolutions per day on activity wheels as did mice from four replicate control lines. At approximately 49 days of age, all mice were placed individually in cages with access to wheels and monitored for 6 days, after which wheels were prevented from rotating for the "sedentary" individuals. During the experiment, five feeding trials were conducted and body mass was measured weekly. After 8 weeks, body composition was measured by hydrogen isotope dilution. Across the five feeding trials, mice in the "active" group (wheels free to rotate) consumed 22.4% more food than mice in the "sedentary" group (wheels locked); mice from the selected lines consumed 8.4% more food than mice from the control lines (average of all trials; body mass-corrected values). In females, but not males, we found a significant interaction between selection and wheel access treatments: within the "active" group the difference in food consumption between selected and control animals was greater than in the "sedentary" group. At the end of the study, mice from the "active" and "sedentary" groups did not differ significantly in body mass; however, mice from the selected lines were approximately 6% smaller in body mass. Estimated lean body mass did not differ significantly either between selected and control lines or between wheel-access groups (P>0.3). Mice from selected lines had lower total body fat compared to mice from control lines (P=0.05; 24.5% reduction; LSMEANS) as did mice from the "active" compared to "sedentary" group (P= 0.03; 29.2% reduction; LSMEANS). Under these conditions, a sufficient explanation for the difference in body mass between the selected and control lines was the difference in fat content.  相似文献   

19.
Pancreatic regeneration after pancreatectomy has been well documented in the animal models. We have recently reported that STZ diabetic animals operated for partial pancreatectomy showed normoglycemic status after the operation as compared to uncontrolled hyperglycemia and even death in the diabetic sham operated animals. In drug and virus-induced experimental diabetic models there is a high mortality of animals due to uncontrolled destruction of the beta-cells. In order to destroy sufficient beta-cell mass so as to induce diabetes but prevent mortality, we designed present studies to investigate the combined effect of pancreatectomy, nicotinamide, and streptozotocin (STZ) on diabetic status of BALB/c mice. BALB/c mice of either sex were subjected to 50% pancreatectomy. These were then treated with nicotinamide (350 mg/kg body weight) before and after streptozotocin (200 mg/kg body weight) administration. The changes in body weight, blood glucose levels, serum and pancreatic insulin contents of these animals were monitored in experimental and control group for 12 weeks, and follow up studies were made of these animals for further 12 weeks. It was found that there was a drastic loss of body weight, decreased serum and pancreatic insulin levels coupled with sustained and low levels of hyperglycemia in the experimental group as opposed to the control group. The results indicate that partial pancreatectomy followed by nicotinamide and streptozotocin treatment leads to a long-lasting hyperglycemic state, depicting the clinical symptom of NIDDM without mortality. The study probably reveals a new model for experimental diabetes.  相似文献   

20.
This study investigated time-dependent variations in the activities of adenosine deaminase (ADA), an adenosine-metabolizing enzyme, and myeloperoxidase (MPO), an oxidation reaction-catalyzing enzyme, in control and streptozotocin (STZ)-induced diabetic rat liver. The animals were sacrificed at six different times of day (1, 5, 9, 13, 17 and 21 hours after lights on - HALO). The hepatic activity of ADA did not change depending on the STZ treatment whereas MPO activity was significantly higher in the diabetics than in the controls. Hepatic ADA activity was dependent on the time of sacrifice with the lowest activity at 21 HALO and the highest activity at 5 HALO. Both enzyme activities failed to show any significant interaction between STZ treatment and time of sacrifice, which means that diabetes does not influence the 24 h pattern of these activities. Since MPO, a heme protein localized in the leukocytes, is involved in the killing of microorganisms, increased MPO activity in diabetic rat liver may reflect leukocyte infiltration secondary to diabetes. A reduction in ADA activity during the dark (activity/feeding) period will presumably lead to high concentrations of adenosine in the liver, possibly contributing to changes in some metabolic processes, such as glycogen turnover and oxygen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号