首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have performed experiments to investigate possible physical interactions between C receptors (CR) and surface Ig (sIg) on the B cell plasma membrane. These molecules were found to be independent, non-linked, B cell surface structures, because capping CR1, CR2, sIgM, or sIgD with a specific antibody did not affect the distribution of the remainder of these molecules. Both CR1 and CR2, if bound by antibodies that did not independently cap CR, however, became associated with cross-linked sIg because CR that have been bound by intact anti-CR antibodies or their Fab fragments co-capped with sIgM or sIgD that had been bound by divalent anti-IgM or anti-IgD antibody. CR1 that had bound C3b similarly co-capped with sIg when sIg was cross-linked. Ligand-bound or even cross-linked CR did not associate with non-cross-linked sIg because sIgD, bound by a univalent Fab fragment of anti-IgD antibody, did not co-cap with CR that had been cross-linked by a sandwich of mouse anti-CR antibody and goat anti-mouse Ig. Other surface molecules, such as B1 and HLA-DR Ag, when bound by specific antibodies, did not cap with cross-linked sIg, and sIgD, when bound by a univalent Fab fragment of anti-IgD antibody, did not co-cap with cross-linked sIgM. Interactions between CR and sIg were not mediated by an association with IgG FcR because co-capping of CR and sIg was observed when F(ab')2 fragments of both anti-CR and anti-Ig antibodies were used. These results demonstrate that B cell surface CR can become associated with sIg, but only if sIg is cross-linked and CR is bound by anti-CR antibody or has bound its natural ligand.  相似文献   

2.
We have investigated the possible physical interactions between CR, receptors for the Fc gamma R and surface Ig (sIg) on the surface membrane of murine B lymphocytes. We used the rat mAb to murine CR, 8C12, and 7G6, as CR ligands, and soluble Ag-antibody complexes as FcR ligands; and F(ab')2 fragments of rabbit antibodies specific for mouse IgM and IgD as sIg ligands. We have found that: 1) sIg, CR, and Fc gamma R are not directly linked, because capping of any one did not affect the expression of the others; 2) the mAb 8C12 and 7G6 failed by themselves to cross-link CR; 3) soluble Ag-antibody complexes crosslinked some, Fc gamma R on a minority of Fc gamma R+ lymphocytes; 4) once loaded with anti-CR mAb, CR co-capped with sIg when sIg was cross-linked; 5) once loaded with Ag-antibody complexes, Fc gamma R also co-capped with sIg when sIg was sIg was cross-linked; 6) loading of Fc gamma R did not affect the co-capping of surface CR with cross-linked sIg and conversely, loading of CR did not affect the co-capping of Fc gamma R with cross-linked sIg; only loaded CR or Fc gamma R co-capped with sIg regardless of the status of the other surface molecule; 7) neither loaded nor free CR co-capped with cross-linked Fc gamma R, and neither loaded nor free Fc gamma R co-capped with cross-linked CR. These results demonstrate that both Fc gamma R and CR independently become associated with sIg when either receptor is loaded and sIg is cross-linked.  相似文献   

3.
We previously demonstrated that a lymphoid dendritic cell-like tumor line (P388AD.2) presented a normally tolerogenic signal, fluoresceinated sheep gamma-globulin (FL-SGG), as an immunogenic one. In contrast, macrophages derived from the peritoneal cavity potentiated the ability of FL-SGG to induce B cell unresponsiveness. In this paper we examined whether two different Ia+ splenic accessory cells differentially presented tolerogen to spleen cells or fluorescein (FL)-binding B cells. Interestingly, lymphoid dendritic cells presented FL-SGG to spleen cells and elicited augmented anti-FL antibody responses, whereas splenic macrophages presented this same moiety and elicited hapten-specific B cell unresponsiveness. The mechanism of splenic macrophage-elicited B cell negative signaling was investigated, and it was found that B cell unresponsiveness was abrogated in the presence of the cyclooxygenase inhibitor indomethacin. This observation suggested a crucial role for PG in B cell negative signaling. The addition of 10 nM PGE2 restored unresponsiveness in cultures treated with indomethacin and tolerogen-pulsed macrophages, even though this dose of PG had no effect on the ability of B cells to be triggered by an immunogenic signal. A role for T cells was excluded, inasmuch as purified hapten-specific B cells were specifically tolerized by FL-SGG-pulsed macrophages. Lymphoid dendritic cells pulsed with FL-SGG did not deliver a tolerogenic or immunogenic signal to FL-specific B cells. However, when PGE2 was supplied, B cell unresponsiveness was induced. Finally, we tested whether "non-tolerogenic" doses of FL-SGG could render hapten-specific B cells unresponsive in the presence of PGE2, but in the absence of accessory cells. Interestingly, the combination of non-tolerogenic amounts (10 to 1000 pg/ml) of FL-SGG in conjunction with PGE2 induced unresponsiveness, whereas neither moiety alone was effective. These results suggest that splenic macrophages and lymphoid dendritic cells exert opposing effects on the immune system as evidenced by the induction of negative or positive B cell signaling. Our observations suggest that one of the key factors in controlling whether an accessory cell delivers a tolerogenic signal is the ability to secrete PG.  相似文献   

4.
Mature and immature B cells differ in their responses to antigen receptor crosslinking. Whereas mature B cells enter cell cycle in response to such stimulation, immature B cells exhibit proliferative unresponsiveness and undergo induced tolerance following surface immunoglobulin (sIg) engagement. Previous studies evaluating antigen receptor-mediated negative signaling have utilized intact goat anti-immunoglobulin (anti-Ig) antibodies as polyclonal ligands based upon observations that the Fc portion of these reagents does not interact with and mediate negative signaling through the FcR on mature B cells. Thus, the negative effects of goat anti-Ig on immature B cells have been attributed solely to signals mediated via their antigen receptors. In the studies reported here we show that the activation unresponsiveness inherent to immature B cells is FcR independent. However, we also show that immature B cells are sensitive to FcR-mediated inhibition and that these effects can be mediated by intact goat antibodies at concentrations that promote positive activation signals in mature B cells. Our results demonstrate that inhibition of immature B cell LPS responses by anti-Ig antibodies, used in previous studies as an in vitro model for B cell tolerance induction, is an FcR-mediated phenomenon. We show that developmentally associated anti-Ig-mediated inhibition of LPS requires the use of intact antibodies, and that this inhibition can be blocked by the anti-FcR monoclonal antibody 2.4G2. Flow cytometric analysis of FcR-positive B cells indicates that both mature and immature B cells express equivalent levels of FcR gamma. Therefore, the sensitivity of immature, but not mature, cells to intact goat anti-mu antibodies suggests that either FcRs or their associated inhibitory pathways change during B cell development.  相似文献   

5.
Purified human peripheral blood monocytes were stimulated with aggregated human myeloma proteins of different classes or the calcium ionophore A23187 and the release of leukotrienes C4 and B4 (LTC4, LTB4), and prostaglandin E2 (PGE2) into the supernatant was determined. The ionophore induced release of 10 +/- 5 ng LTC4/10(6) cells and 25 +/- 8 ng LTB4/10(6) cells. Aggregated IgG, IgA, and IgE, but not IgM or monomeric immunoglobulins (Ig), induced release of LTC4 and LTB4 that was approximately 10 to 20% of that induced by ionophore. In addition, IgG, IgA, and IgE, but not IgM, induced release of PGE2 (range 0.015 to 0.22 ng/10(6) cells). Aggregated Ig induced LTC4, LTB4, and PGE2 release in a dose-dependent manner; maximal leukotriene (LT) release was observed by 30 min, in contrast to PG release, which continued to increase up to 2.5 hr. Both ionophore- and Ig-induced LTC4 and LTB4 release were completely inhibited by removal of calcium from the media and by preincubation of cells with nordihydroguaiaretic acid. Indomethacin inhibited Ig-induced PGE2 release by 80%. Phagocytosis of the Ig aggregates was not required for LT or PGE2 release, since release was not inhibited by cytochalasin B. Release of LTC4, LTB4, and PGE2 induced by IgG, IgA, and IgE, but not IgM, correlated with the presence or absence of monocyte Fc receptors (FcR) as determined by rosette assays. The data suggest that IgG, IgA, and IgE immune complexes mostly likely induce monocyte arachidonic acid metabolism via cross-linking of FcR. The ability of monocytes to release eicosanoids in the absence of phagocytosis suggests that interaction of monocytes with immobilized immune complexes, such as those deposited in blood vessel walls or glomerular basement membranes, could initiate metabolism of arachidonic acid by monocytes. Such a mechanism could contribute to inflammatory reactions characterized by mononuclear cell infiltrates.  相似文献   

6.
Antigen-induced Ca2+ signaling and desensitization in B cells   总被引:2,自引:0,他引:2  
Cross-linking of B cell surface Ig (sIg) by anti-Ig results in transmembrane signaling. However, the capacity of a thymus-dependent (TD) Ag to mediate B cell signal transduction has been less well documented. Therefore, we examined Ag-induced intracellular free calcium concentration [( Ca2+]) in B cells by using TD Ag that would be expected to either cross-link or not cross-link sIgM and/or induce the coupling of sIgM to FcR. Stimulation of mouse TA3 hybridoma B cell transfectants that express the SP6 anti-TNP specific sIgM with either TNP-OVA or anti-IgM antibodies resulted in a maximal fourfold increase in [Ca2+]i. The net increase in [Ca2+]i in response to TNP-OVA was dependent upon both the Ag dose and the TNP:OVA molar ratio. Because occupancy of several cell-surface receptor types leads to a loss of response to subsequent stimulation by ligand (homologous desensitization), we examined the ability of Ag to induce homologous desensitization of sIgM in these B cells. TNP1-OVA at all concentrations tested (up to 500 micrograms/ml) did not lead to any change in [Ca2+]i or desensitization. Cross-linking of TNP1-OVA (10 micrograms/ml) with F(ab')2 of anti-OVA antibody induced both a rise in [Ca2+]i and homologous desensitization of sIg, suggesting that cross-linking of sIgM by Ag is sufficient to induce both these processes. TNP6-OVA at a concentration of 10 micrograms/ml induced changes in [Ca2+]i and partially desensitized TNP-specific B cells to stimulation by anti-IgM. Interestingly, a high dose (180 micrograms/ml) of TNP6-OVA stimulated minimal changes in [Ca2+]i yet did not lead to desensitization. However, cross-linking of TNP6-OVA at this high dose with F(ab')2 of rabbit anti-OVA elevated [Ca2+]i and elicited partial desensitization. Complete desensitization of sIgM by Ag was achieved when intact (Fc-containing) anti-OVA antibody was used, suggesting that the FcR can play a role in desensitization. Ag- and antibody-mediated desensitization was not caused by steric hindrance of sIg. Thus, we have observed two forms of Ag-induced desensitization of sIgM, both of which involve sIg cross-linking and one of which is mediated by the physiologic coupling of sIg to FcR.  相似文献   

7.
B lymphocytes have been shown to proliferate and release oxygen metabolites when surface Ig is cross-linked and when stimulated with phorbol ester. Biochemical evidence has been provided for the presence of a superoxide generating system in B cells, which seems to be identical to the well-characterized NADPH-oxidase of phagocytes. In this report, we show that normal and EBV-transformed B cells produce superoxide anions after stimulation with phorbol ester and when surface Ig was cross-linked, as detected by lucigenin-dependent chemiluminescence. Anti-surface IgG antibodies induced a significant respiratory burst whereas those directed against surface IgM had no effect on B cell oxidative metabolism. Prestimulated B lymphocytes responded to further triggering by the same or another ligand. Pretreatment with Staphlococcus aureus Cowan I strain (SAC) or anti-IgM antibodies resulted in complete unresponsiveness to subsequent SAC or anti-IgG stimulation, but it did not affect PMA- and ionomycin-mediated B cell chemiluminescence. In contrast to preincubation with anti-IgM antibodies, the pretreatment of B cells with SAC induced a transient inhibitory effect on B cell signaling. In fact, SAC-pretreated B lymphocytes could be restimulated with the same ligand when blast cells were isolated. Furthermore, a 24-h incubation of the pretreated B cells in the absence of SAC completely restored the SAC-mediated respiratory burst. These results suggest that two distinct mechanisms may account for SAC- and anti-IgM-induced inhibition: a transient and reversible modulation of surface Ig, induced by SAC, and a long-lasting desensitization of the surface Ig receptors, respectively. These findings may have interesting implications for understanding the transduction of negative signals in B lymphocytes.  相似文献   

8.
B lymphocyte responses to the cross-linking of surface Ig (sIg) are known to be inhibited, when IgG is the cross-linking agent, by the concurrent binding of the Fc portion of the IgG to Fc gamma R. We present a mathematical framework for designing and analyzing experiments aimed at uncovering the inhibition mechanism(s). From our model, we calculate concentrations of receptors and ligands in the different cell surface states, at equilibrium or as a function of time. IgG can cross-link surface receptors in three ways, i.e., by bridging two sIg molecules without Fc binding, by bridging two sIg while binding as well to an Fc gamma R, and by binding to an Fc gamma R and only one sIg. We show how the concentrations or fractions of these distinct cross-linked states depend on experimentally manipulable variables, including the concentrations of intact IgG, bivalent and monovalent IgG fragments, and agents that block Fc binding. Then, using simple signal/response relationships, reflecting active and passive mechanisms of Fc-mediated inhibition, we simulate the results of a variety of experiments. In cases where published experimental results are available, we find that the qualitative predictions of our general model are consistent with the data and that comparisons of simulations with available data provide some quantitative information about the parameters governing the cell surface signaling events. In particular, comparison of model predictions with published experiments on the kinetics of IgG-induced inositol trisphosphate production indicate that sIg cross-links form more rapidly than sIg-Fc gamma R "co-cross-links." Further, IgG-sIg bonds stabilize Fc attachments, i.e., the dissociation of IgG from Fc gamma R is slowed significantly when the IgG is also cross-linked to sIg. Predictions of the model suggest other experiments and ways of presenting the data that will help to identify relationships between the molecular signaling events occurring on the cell surface and the various cellular responses.  相似文献   

9.
B cell susceptibility to Fas-mediated apoptosis is regulated in a receptor-specific fashion. CD40 engagement produces marked sensitivity to Fas killing, whereas surface Ig (sIg) engagement blocks Fas signaling for cell death in otherwise sensitive, CD40-stimulated B cell targets, and thus, induces a state of Fas resistance. The signaling mediator, Bruton's tyrosine kinase (Btk), is required for certain sIg-triggered responses, and Btk is reported to directly bind Fas and block Fas-mediated apoptosis. For these reasons, the role of Btk as a mediator of sIg-induced Fas resistance was examined. Dysfunction of Btk through mutation, and absence of Btk through deletion did not interfere with induction of Fas resistance by anti-Ig. This may be due, at least in part, to induction of Btk-dependent Bcl-2 family members by anti-Ig after CD40 ligand treatment. However, the susceptibility to Fas-mediated apoptosis of B cell targets stimulated by CD40 ligand alone was increased in the absence of Btk. These results indicate that Fas resistance produced by sIg triggering does not require Btk, but suggests that in certain situations Btk modulates B cell susceptibility to Fas killing.  相似文献   

10.
Prostaglandins (PG) have been implicated as modulators of both humoral and cellular immune responses. In order to evaluate a possible role for PG in tolerance, the effect of inhibitors of prostaglandin synthesis on tolerance induction and circumvention has been investigated. Injection of deaggregated human gamma-globulin (DHGG) into A/J mice leads to unresponsiveness to a subsequent challenge with immunogenic aggregated human gamma-globulin (AHGG). Administration of indomethacin (IM) or acetylsalicylic acid (ASA) shortly before and after DHGG injection prevents tolerance induction. PGE2 reverses the tolerance overriding effect provided by IM. IM is not able to overcome unresponsiveness when given 10 and 20 days after tolerance induction, at a time point when both T and B lymphocytes are tolerant. As previously shown, lipopolysaccharide (LPS) both inhibits the induction of tolerance to HGG and circumvents tolerant T helper cells late in tolerance when competent B cells are present. In contrast, IM is unable to circumvent T-helper cell tolerance when given at Day 60 after tolerogen, when B cells (but not T cells) are responsive. Furthermore, LPS acts as an adjuvant, B-cell mitogens, inducer of polyclonal Ig secretion, and primes mice when given with tolerogen, while IM has none of these properties. These results indicate a difference between the effects of IM and LPS on tolerance and a possible role of PG in DHGG-mediated tolerance induction.  相似文献   

11.
Murine mAb to CD13, CD14, and class II MHC, are able to mobilize calcium in normal human monocytes and enhance superoxide production in primed cells. Antibodies to CD35 (CR1) also cause a minor calcium response in some individuals. Antibodies to CD11a, CD11b, CD11c, CD15, CD17, CD18, and CD45 do not activate monocytes. The ability of mAb to cause monocyte activation is not only dependent on the Ag with which they react but also on the isotype of the antibodies and the individual from whom the monocytes were obtained. It is shown that this is because the mAb that activate monocytes do so by formation of Ag-antibody-FcR complexes. F(ab')2 fragments of mAb to CD13 and CD14 do not therefore activate monocytes even when cross-linked with F(ab')2 anti-mouse Ig but do so when cross-linked with intact anti-mouse Ig. These data indicate that activation via the FcR requires perturbation of this receptor but does not necessarily require cross-linking of one FcR to another. Antibody-coated particles or cells able to bind to cell surface receptors on monocytes other than the FcR would thus augment FcR-mediated activation.  相似文献   

12.
CR2 ligands modulate human B cell activation   总被引:12,自引:0,他引:12  
A considerable body of evidence from this and other laboratories indicates that complement receptor type 2 (CR2) modulates B cell activation and growth. In the present studies we have examined the effects of three different types of CR2 ligands, i.e., monomeric, aggregated, and latex-bound C3dg; mAb to different CR2 epitopes; and UV-inactivated, non-transforming EBV (EBVUV) for their actions on highly purified, high density resting tonsil B cells. Although none of these ligands induced B cells to enter the cell cycle or synergized with either anti-mu or low m.w. B cell growth factor in triggering B cell mitogenesis, aggregated C3dg, latex-bound C3dg, the OKB7 anti-CR2 mAb, and EBVUV-enhanced thymidine incorporation by phorbol ester-activated tonsil B cells. Such enhancement was not T cell or monocyte dependent. The major action of the CR2 ligands thus seems to be to enhance the transition of B cells activated by certain stimuli from the G1 to the S phase of the cell cycle. In contrast to the action of aggregated and latex-bound C3dg, monomeric C3dg was inhibitory for phorbol ester and aggregated C3dg-induced B cell activation. The HB-5 anti-CR2 mAb, which reacts with a different epitope on CR2 from that of OKB7, did not synergize with PMA in B cell activation. These data provide additional evidence for a role for the CR2 in the control of B cell growth and provide a useful model for studying the CR2-mediated signals that affect the growth of B cells.  相似文献   

13.
This study reports early B and T cell signaling events during cognate interactions between a human B cell line pulsed with peptide and an Ag-specific T cell clone. As has been previously reported, peptide in the context of the appropriate class II molecule stimulated a rise in intracellular calcium [Ca2+]i in the Ag-specific T cell clone. The activation of the T cell clone was associated with a reciprocal rise in [Ca2+]i in the B cells. Engagement of receptors on the B cell surface by the T cell also was associated with inositol phospholipid turnover comparable to that elicited by stimulation through sIg. Early signaling events in B cells can therefore be stimulated in cognate interactions with Ag-specific T cells, without the direct engagement of Ig receptors. A class II deficient B lymphoblastoid mutant, 6.1.6, which was incapable of presenting peptide to the T cell clone, could be stimulated to produce a rise in [Ca2+]i if the T cell clone was activated by monoclonal antibodies to CD3. Therefore, the interaction of class II molecules on the B cell with the TCR and/or the CD4 accessory molecule was not essential for T-dependent B cell activation. However, T-dependent signalling of B cells was profoundly inhibited by mAb to CD18 (beta-chain of LFA-1) on the T cell or CD54 (ICAM-1) on the B cell, demonstrating the importance of this pair of adhesion molecules in early T-B cell interactions.  相似文献   

14.
The T cell mitogens Pa-2, concanavalin A (con A) and its dimeric derivative succinyl-con A, were each cross-linked with the bifunctional reagent dimethyl suberimidate. Although the dose-response curves of these insoluble aggregated products were markedly changed from those of the soluble mitogens, each aggregate continued to stimulate DNA synthesis by murine thymus and T cells. Both aggregated Pa-2 and aggregated succinyl con A stimulated DNA synthesis by B cells from athymic (Nu/Nu) mice. Aggregated con A did not stimulate these cells and, like soluble con A, depressed the background incorporation of 3H-thymidine. Unlike soluble Pa-2, aggregated Pa-2 also greatly increased Ig production by both the B cell cultures and B + T cell cultures from normal (BALB/c) mice.  相似文献   

15.
To investigate the properties which enable type 2 Ag, as exemplified by dextran and Ficoll, to stimulate high levels of antibody responses in the relative absence of T cells, we conjugated anti-IgD and anti-IgM mAb to both dextran and Ficoll and examined their B cell-activating properties. Such conjugated anti-Ig antibodies stimulated both early and later stages of B cell activation at picogram concentrations, which are at least 1000-fold lower than that required for B cell stimulation by unconjugated anti-Ig antibodies, and the level of proliferation they stimulated was on average 10-fold greater. Furthermore, concentrations of anti-Ig dextran (100 pg/ml) which modulated little sIgD from the B cell surface were strong inducers of enhanced B cell expression of MHC class II molecules. Conjugation of Fab fragments of anti-IgD or nonmitogenic anti-IgM mAb to dextran rendered them as mitogenic as dextran conjugated to strongly stimulatory anti-IgD or anti-IgM antibodies. The ability of dextran and Ficoll to serve as effective carrier molecules for anti-IgD was not related solely to their large m.w., because anti-IgD coupled to polymerized BSA (m.w. 1.5 X 10(6), was only 10- to 50-fold more potent than unconjugated anti-IgD antibodies at stimulating B cell DNA synthesis. These results suggest, therefore, that the unique ability of picogram concentrations of haptenated type 2 Ag to stimulate Ig secretion in the absence of T cells may be a function of their ability to promote effective cross-linking without resulting in the modulation of sIg. This would enable such Ag to mediate repetitive B cell signaling, a situation that cannot be achieved by unconjugated anti-Ig antibodies which result in modulation of sIg at their mitogenic concentrations. These compounds therefore may be employed to study B cell activation stimulated by sIg cross-linking at concentrations that may more closely reflect those which are achieved under physiologic conditions by type 2 Ag.  相似文献   

16.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

17.
The ontogeny of Ig, FcR, and CR-bearing cells in liver and spleen has been followed by using rosetting procedures. These studies demonstrated a sequential appearance of surface receptors during development. Two types of Ig+ cells could be distinguished according to their rosette morphology and adherence to carbonyl iron: 1) an adherent cell which bound few erythrocytes was found predominantly in fetal liver from 13 days gestation and 2) a nonadherent cell which bound larger numbers of erythrocytes appeared in small numbers in fetal liver from day-16 gestation but represented the major Ig+ cell type after birth. Changes in the proportions of receptor-bearing populations occurred at two particular periods during ontogeny. The first was at birth, where an increase in the proportion of FcR+ cells occurred and the proportion of type 2 Ig+ cells rose rapidly. This probably represented the first appearance of FcR+ B lymphocytes even though cells bearing FcR were detected in fetal liver of all ages (days 12 to 18). The second period was around 10 days after birth when the proportion of Ig+ cells again increased concomitant with the appearance of CR+ nonadherent cells.  相似文献   

18.
Among all classes of Ig, IgE exhibits the highest rate of fractional catabolism of which the site and mechanisms is not understood. We construct a panel of murine B cell hybridomas to investigate the catabolism of IgE; one of these hybridomas, 17A11, constitutively expresses high levels of type II IgE FcR (Fc epsilon RII, CD23) (Kd:1.77 nM; B max: 1.65 x 10(5], and is capable of clearing receptor-bound IgE. Receptor-mediated endocytosis of IgE ligand ensues after binding monomeric and DNP-BSA:IgE immune complexes, and the binding is inhibited by treating 17A11 with anti-CD23. IgE ligands are sequestered and are not susceptible to acid stripping from the cell surface. The internalized IgE ligands redistributed into acid hydrolase containing high density lysosomal vesicles and were degraded; metabolic inhibitors such as chloroquine and monensin that elevate intracellular pH of 17A11 also prevent entry of IgE ligand into lysosomes. These observations raise the possibility that normal Fc epsilon RII-bearing mature B cells in the circulation and lymphoid tissues may function in sequestration and catabolic turnover of IgE molecules through IgE or IL-4 up-regulated Fc epsilon RII uptake; B cell Fc epsilon RII may perform an important role in determining the short biological half-life of IgE molecules, and contributes to IgE homeostasis.  相似文献   

19.
To further study the mechanisms by which surface Ig triggering activates the inositol phospholipid signaling pathway, we have used B cells from chronic lymphocytic leukemia patients which, as previously described, display two patterns of response upon sIg cross-linking: in one group this cross-linking induces an inositol phosphate release, an intracellular free Ca2+ concentration elevation and a subsequent cell proliferation; in a second group none of these events occur although there is an increased class II Ag expression following anti-mu stimulation as in the first group. We have been able to demonstrate that the phosphatidyl inositol specific phospholipase C (PI-PLC) can be activated in permeabilized B cells from the first group by direct stimulation, with GPT gamma S, of a guanine nucleotide binding (G) protein. In addition, since anti-mu + GTP gamma S stimulate an increased inositol phosphate production in these cells, this suggests that surface Ig cross-linking activates PI-PLC via a G protein. However, in cells from the second group no inositol phosphate is released after GTP gamma S stimulation although PI-PLC can be directly activated by high Ca2+ concentrations. This reflects in these cells, an interruption of the signaling cascade sIg/G protein/PI-PLC at the level of the G protein or at the G protein/PI-PLC coupling. In cells from both groups PMA treatment, which is known to alter phosphatidyl inositol metabolism in B cells, completely inhibits PI-PLC activation even by high Ca2+ concentrations. These studies show that the phosphatidyl inositol-dependent signaling cascade after surface Ig triggering can be altered at different levels in B cells.  相似文献   

20.
The interaction of an Ag ligand with its B cell surface Ig (sIg) receptor can occur via an FcR-dependent or -independent pathway. We previously found that transfected TNP-specific B cells undergo both Ca2+ signaling and desensitization upon interaction with the thymus-dependent Ag TNP-OVA. Similarly, we showed that these B cells can also be desensitized by cross-linking sIg to the Fc gamma R via the formation of an Ag-antibody bridge. Thus, Ag-specific B cells can be desensitized by two different Ag-dependent events, one mediated by Ag-sIg interaction and the other by sIg-Fc gamma R cross-linking. Inasmuch as Ag-sIg and sIg-Fc gamma R interactions lead to positive and negative signaling, it was of interest to determine whether B cell desensitization mediated by these interactions occurs by one of the well known signaling pathways in B cells. We found that Ag-induced changes in [Ca2+]i could be readily dissociated from Ag-induced desensitization, indicating that a Ca(2+)-independent pathway is likely responsible for this pathway of desensitization. To determine if PKC plays a role in B cell desensitization mediated by either Ag or sIg-Fc gamma R interaction, PKC was downregulated by long term exposure to 12-O-tetradecanoylphorbol 13-acetate or inhibited by exposure of cells to staurosporine. The PKC down-regulated and inhibited cells underwent similar Ag- and Fc gamma R-dependent desensitization compared to cells containing active PKC. Taken together, these data indicate that Ag-induced desensitization of B cell signaling likely involves an event(s) that occurs either upstream or independent of Ag-induced elevations in [Ca2+]i and PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号