首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Localization of HIV-1 RNA in mammalian nuclei   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

9.
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Lin S  Xiao R  Sun P  Xu X  Fu XD 《Molecular cell》2005,20(3):413-425
SR proteins are a family of sequence-specific RNA binding proteins originally discovered as essential factors for pre-mRNA splicing and recently implicated in mRNA transport, stability, and translation. Here, we used a genetic complementation system derived from conditional knockout mice to address the function and regulation of SR proteins in vivo. We demonstrate that ASF/SF2 and SC35 are each required for cell viability, but, surprisingly, the effector RS domain of ASF/SF2 is dispensable for cell survival in MEFs. Although shuttling SR proteins have been implicated in mRNA export, prevention of ASF/SF2 from shuttling had little impact on mRNA export. We found that shuttling and nonshuttling SR proteins are segregated in an orderly fashion during mRNP maturation, indicating distinct recycling pathways for different SR proteins. We further showed that this process is regulated by differential dephosphorylation of the RS domain, thus revealing a sorting mechanism for mRNP transition from splicing to export.  相似文献   

17.
18.
The human scavenger decapping enzyme, DcpS, functions to hydrolyze the resulting cap structure following cytoplasmic mRNA decay yet is, surprisingly, a nuclear protein by immunofluorescence. Here, we show that DcpS is a nucleocytoplasmic shuttling protein that contains separable nuclear import and Crm-1-dependent export signals. We postulated that the presence of DcpS in both cellular compartments and its ability to hydrolyze cap structure may impact other cellular events dependent on cap-binding proteins. An shRNA-engineered cell line with markedly diminished DcpS levels led to a corresponding reduction in cap-proximal intron splicing of a reporter minigene and endogenous genes. The impaired cap catabolism and resultant imbalanced cap concentrations were postulated to sequester the cap-binding complex (CBC) from its normal splicing function. In support of this explanation, DcpS efficiently displaced the nuclear cap-binding protein Cbp20 from cap structure, and complementation with Cbp20 reversed the reduced splicing, indicating that modulation of splicing by DcpS is mediated through Cbp20. Our studies demonstrate that the significance of DcpS extends beyond its well-characterized role in mRNA decay and involves a broader range of functions in RNA processing including nuclear pre-mRNA splicing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号