首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dinoflagellate Prorocentrum minimum (P. minimum) can be found in all seasons and over a broad range of habitat conditions in the Chesapeake Bay and its tributaries. Blooms (>3000 cells ml−1), locally referred to as ‘mahagony tides’, were restricted to salinities of 4.5–12.8 psu, water temperatures of 12–28 °C, and occurred most frequently in April and May. P. minimum blooms have been detected at routine water quality monitoring stations located in the main channel of the Bay and tidal tributaries. Nearshore investigations of bloom events, however, have accounted for the majority of events recorded in excess of 105 cells ml−1. Mahogany tides were associated with widespread harmful impacts including anoxic/hypoxic events, finfish kills, aquaculture shellfish kills and submerged aquatic vegetation losses. We summarize the state of knowledge regarding physical and chemical factors related to P. minimum blooms, their abundance, distribution and frequency, and ecological effects in Chesapeake Bay.  相似文献   

2.
The cosmopolitan dinoflagellate Prorocentrum minimum is a recurrent bloom forming species in the Chesapeake Bay and its tributaries, generally observed at its highest levels in late spring and summer. Laboratory studies were conducted to assess potential bloom impacts on diel oxygen concentrations in shallow littoral zones as well as settlement success and post-set growth of the eastern oyster Crassostrea virginica. Using light–dark and dark cultures and periodic diel sub-sampling, bloom levels of P. minimum produced supersaturated oxygen levels at the end of each day while darkened cultures were typified by rapid decreases in dissolved oxygen (DO) (1.1–1.3 mg L−1 h−1) to hypoxic and anoxic levels within 4 days. These data suggest shallow, poorly flushed systems and the biota in them will experience rapid and large diel variations in oxygen, implying recurrent P. minimum blooms need be considered as short-term oxygen stressors for Bay oyster spat and other living resources. Direct effects of P. minimum impacts on oysters were not as expected or previously reported. In one experiment, pre-bloom isolates of P. minimum were grown and then exposed to polyvinyl chloride (PVC) settlement plates to see whether dinoflagellate preconditioning of the hard substrate might affect oyster sets. No differences were noted between set on the PVC with P. minimum exposure to set recorded with filtered seawater, Instant Ocean®, or Isochrysis. In the second oyster experiment, spat on PVC plates were exposed to field collected P. minimum blooms and a commercial mixture of several other food types including Isochrysis. Oyster growth was significantly higher in P. minimum exposures than noted in the commercial mix. These results, compared to results with other isolates from the same region, indicate substantial positive impact from some of the P. minimum blooms of the area while others separated in space, time, or nutrient status could severely curtail oyster success through toxin production induced by nutrient limitation.  相似文献   

3.
During a 4-week period in late spring 1998 an extensive Prorocentrum minimum (Pavillard) Schiller bloom developed in several tributaries of the Chesapeake Bay. Experiments were carried out in one of these tributaries using 13C and 15N isotopic techniques to characterize C and N uptake as a function of irradiance during the course of this bloom. Uptake rates of N substrates (NO3, NH4+, urea, and an amino acid mixture) and C substrates (bicarbonate and urea) were measured. For each N substrate, short-term uptake rates (0.5 h) were not substantially different over the irradiance range measured, suggesting that N uptake of this dinoflagellate was not strongly light-dependent over this time scale. Dark uptake rates of all N substrates ranged between 35 and 113% of light uptake rates. Over the duration of the P. minimum bloom, however, total ambient N uptake rates increased with increasing natural irradiance. Uptake of bicarbonate showed typical light-dependent photosynthetic characteristics and the measured photosynthetic parameters suggested that at least on the short time scale (0.5 h), P. minimum cells were adapted to high light. Rates of C uptake from the substrate urea were minimal, <1% of total C uptake from photosynthesis, but doubled over the course of the bloom, and like N uptake, were not strongly light-dependent on the short time scale (0.5 h). Significant N dark uptake by P. minimum was likely to have been important by providing N sources over the daily scale to sustain the bloom.  相似文献   

4.
During the late spring and early summer of 1998, an extensive bloom of the dinoflagellate Prorocentrum minimum (>93% of phytoplankton cell density) developed in several tributaries of the Chesapeake Bay, USA. In January 1999, a bloom of mixed dinoflagellates (Heterocapsa rotundata, H. triquetra and P. minimum, with P. minimum forming 21% of total phytoplankton cells and 39% of the total biovolume) developed in the mesohaline Neuse Estuary, North Carolina, USA. During these blooms, experiments were carried out to characterize the nitrogen uptake kinetics of these assemblages with 15N isotopic techniques. Four nitrogenous substrates (NO3, NH4+, urea, and a mixed amino acids substrate) were used to determine uptake rate and substrate preference. Rates of nitrogen uptake were also measured in P. minimum cultures grown on varying growth nitrogen substrates. The calculated kinetic parameters determined for the P. minimum-dominated field assemblages and the cultures indicated a preference for NH4+. NH4+ was also the primary nitrogen source supporting the blooms. In addition, a high affinity for urea was also found, and urea contributed significantly to the Neuse Estuary bloom. Furthermore, results showed that the regulation of uptake for each of the substrates was different: strong positive relationships between affinity and temperature were found for NH4+ and amino acids, while a negative response was found for NO3, and very little response to temperature was noted for urea. These differences suggest that a diversity of nitrogen uptake mechanisms may aid the development and maintenance of P. minimum blooms.  相似文献   

5.
The activities of the enzymes α‐ and β‐glucosidase, and leucine aminopeptidase were measured in cultures of the dinoflagellate Prorocentrum minimum (Pavill.) J. Schiller and in field samples collected during dinoflagellate blooms occurring in tributaries of the Chesapeake Bay, Maryland, USA. Activities were measured using fluorogenic artificial substrates and partitioned among the >5 μm size fraction, small microbes fraction (0.1–5 μm), and dissolved phase (<0.1 μm). P. minimum and most other photosynthetic dinoflagellates are >5 μm in size and thus can be separated from the small microbes fraction, which contains most bacteria. Little to no glucosidase activity was detected associated with the >5 μm size fraction in cultures or in field samples, with most of the activity (67% to 93% in cultures, 54% to 100% in field samples) in the small microbes size fraction for both α and β glucosidase. In contrast, 67% to 90% of the total leucine aminopeptidase (LAP) activity in cultures was measured in the >5 μm fraction. Within a culture, LAP activity in the size fraction containing P. minimum decreased in response to ammonium and urea additions, but not in response to nitrate. In field samples, LAP activity was positively correlated with dinoflagellate abundance and chl a, and negatively correlated with ammonium concentration. During blooms, up to 34% of LAP activity was associated with the >5 μm fraction, indicating that when abundant, dinoflagellates may make a substantial contribution to ectocellular LAP activity in the water column.  相似文献   

6.
In 1997 blooms of Pfiesteria piscicida occurred in association with fish kills and human health problems in tributaries of the Chesapeake Bay (Maryland) and the scientific and media response resulted in large economic losses in seafood sales and tourism. These events prompted the Maryland Department of Natural Resources (MDNR) to begin monitoring for Pfiesteria spp. in water column samples. Real-time PCR assays targeted to the 18S rRNA gene were developed by our laboratories and utilized in conjunction with traditional microscopy and fish kill bioassays for detection of these organisms in estuarine water samples. This monitoring strategy aided in determining temporal and spatial distribution of motile forms of Pfiesteria spp. (i.e. zoospores), but did not assess resting stages of the dinoflagellates’ life cycle. To address this area, a 3-year study was designed using real-time PCR assays for analysis of surface sediment samples collected from several Chesapeake Bay tributaries. These samples were tested with the real-time PCR assays previously developed by our laboratories. The data reported herein suggest a strong positive association between presence of Pfiesteria spp. in the sediment and water column, based on long-term water column monitoring data. P. piscicida is detected more commonly in Maryland's estuarine waters than Pfiesteria shumwayae and sediment ‘cyst beds’ may exist for these organisms.  相似文献   

7.
Prorocentrum minimum is a planktonic dinoflagellate known to produce red tides that can be harmful. To recognize localities and understand occurrences of Prorocentrum minimum blooms in Mexico, published data of plankton from 1942 to present, as well as unpublished data from the authors, were reviewed. Studies and reports covered marine and coastal waters of México during different periods. Presence of P. minimum were reported in the Pacific coast, Gulf of California, Gulf of México, and the Caribbean, but blooms have been only reported since 1990. Thirteen bloom events were recorded. Six occurred in shrimp ponds and seven near aquaculture regions or coastal areas where intensive agriculture is practiced. Most of the blooms can be associated with damage to the surrounding marine biota either in aquaculture ponds or open waters. Direct toxicity has not been fully evaluated, but data suggest that low oxygen may not easily explain all of the damage. Interestingly, for yet unknown reasons, cells belonging to the triangular morphotype have seldom been reported in México.  相似文献   

8.
Prorocentrum minimum is a neritic dinoflagellate that forms seasonal blooms and red tides in estuarine ecosystems. While known to be mixotrophic, previous attempts to document feeding on algal prey have yielded low grazing rates. In this study, growth and ingestion rates of P. minimum were measured as a function of nitrogen (‐N) and phosphorous (‐P) starvation. A P. minimum isolate from Chesapeake Bay was found to ingest cryptophyte prey when in stationary phase and when starved of N or P. Prorocentrum minimum ingested two strains of Teleaulax amphioxeia at higher rates than six other cryptophyte species. In all cases ‐P treatments resulted in the highest grazing. Ingestion rates of ‐P cells on T. amphioxeia saturated at ~5 prey per predator per day, while ingestion by ‐N cells saturated at 1 prey per predator per day. In the presence of prey, ‐P treated cells reached a maximum mixotrophic growth rate (μmax) of 0.5 d?1, while ‐N cells had a μmax of 0.18 d?1. Calculations of ingested C, N, and P due to feeding on T. amphioxeia revealed that phagotrophy can be an important source of all three elements. While P. minimum is a proficient phototroph, inducible phagotrophy is an important nutritional source for this dinoflagellate.  相似文献   

9.
In response to systemic losses of submerged aquatic vegetation (SAV) in the Chesapeake Bay (east coast of North America), the U.S. Environmental Protection Agency's (EPA) Chesapeake Bay Program (CBP) and Maryland Department of Natural Resources (MD DNR) have considered SAV restoration a critical component in Bay restoration programs. In 2003, the CBP created the “Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay” in an effort to increase SAV area. As part of this strategy, large‐scale eelgrass (Zostera marina) restoration efforts were initiated in the Patuxent and Potomac Rivers in Maryland. From 2004 to 2007, nearly 4 million Z. marina seeds were dispersed over 10 ha on the Patuxent River and almost 9 million seeds over 16 ha on the Potomac River. Z. marina seedling establishment was consistent throughout the project (<4%); however, restored eelgrass survival was highly dependent on restoration site. Restoration locations on the Patuxent River experienced initial Z. marina seedling germination, but no long‐term plant survival. Restored Z. marina on the Potomac River has persisted and expanded, both vegetatively and sexually, beyond initial seeding areas. Healthy Z. marina beds now cover approximately five acres of the Potomac River bottom for the first time in decades. The differential success of Z. marina restoration efforts in the two rivers is evidence for the necessity of carefully considering site‐specific characteristics when using large‐scale seeding methods to achieve successful SAV restoration.  相似文献   

10.
A semi-idealized marine ecosystem model, designed as a heuristic tool for exploring the population dynamics of non-inducible versus toxic forms of Pfiesteria is described. The model is based on empirical evidence suggesting that these differing functional types of Pfiesteria also differ substantially in terms of what they eat and how they utilize it to optimize their growth. Non-inducible strains are similar to other mixotrophic dinoflagellates, whereas toxic strains may consume organic matter and detritus, produce toxins and attack fish. In our model formulation we represent these differences in a simplified way: the non-inducible strain is kleptochloroplastidic and it can take up DIN, but it cannot utilize DON, whereas the toxic strain is heterotrophic, it cannot utilize DIN, but it can utilize DON directly. These differences give rise to very different impacts on prey and nutrient concentrations in our model. Under high DIN/DON ratio conditions, the non-inducible cells grew much faster and were therefore more likely to bloom, but this advantage is substantially mitigated when the DIN/DON ratio is low. A turbulence parameterization was also incorporated into our model. The effect of this was to reduce the grazing rate of Pfiesteria when turbulence levels are high. According to our model, increased turbulence is more detrimental to the toxic functional type because it grows more slowly. The further imposition of microzooplankton grazing in the model showed that top-down control effects can be very significant, which is consistent with both laboratory and field studies and the general idea that plankton blooms can only happen in the absence of substantial grazing control. In general, our model results suggest that non-toxic blooms are more likely to occur in more turbulent inorganic-nutrient rich conditions, which are often found in more open coastal and estuarine waters that are subject to high inorganic loading. In contrast, toxic blooms are more likely to occur in calm, organic-nutrient rich conditions, which are often found in shallow, protected tributaries that are subject to high organic nutrient loading. Our model results also support the idea that the absence of strong grazing pressure is a prerequisite to bloom formation for both non-inducible and toxic strains of Pfiesteria. These results are generally consistent with observed patterns of toxic Pfiesteria blooms in Chesapeake Bay, the Neuse River of North Carolina and many other coastal and estuarine environments.  相似文献   

11.
《Harmful algae》2005,4(3):449-470
Prorocentrum minimum (Pavillard) Schiller, a common, neritic, bloom-forming dinoflagellate, is the cause of harmful blooms in many estuarine and coastal environments. Among harmful algal bloom species, P. minimum is important for the following reasons: it is widely distributed geographically in temperate and subtropical waters; it is potentially harmful to humans via shellfish poisoning; it has detrimental effects at both the organismal and environmental levels; blooms appear to be undergoing a geographical expansion over the past several decades; and, a relationship appears to exist between blooms of this species and increasing coastal eutrophication. Although shellfish toxicity with associated human impacts has been attributed to P. minimum blooms from a variety of coastal environments (Japan; France; Norway; Netherlands; New York, USA), only clones isolated from the Mediterranean coast of France, and shellfish exposed to P. minimum blooms in this area, have been shown to contain a water soluble neurotoxic component which killed mice. Detrimental ecosystem effects associated with blooms range from fish and zoobenthic mortalities to shellfish aquaculture mortalities, attributable to both indirect biomass effects (e.g., low dissolved oxygen) and toxic effects. P. minimum blooms generally occur under conditions of high temperatures and incident irradiances and low to moderate salinities in coastal and estuarine environments often characterized as eutrophic, although they have been found under widely varying salinities and temperatures if other factors are conducive for growth. The physiological flexibility of P. minimum in response to changing environmental parameters (e.g., light, temperature, salinity) as well as its ability to utilize both inorganic and organic nitrogen, phosphorus, and carbon nutrient sources, suggest that increasing blooms of this species are a response to increasing coastal eutrophication.  相似文献   

12.
The biological, physical and chemical properties of Lake Elphinstone were studied during a dense, toxic cyanoprokaryote bloom dominated by Microcystis. Decreases in total abundance and richness in macroinvertebrate communities coincided with increases in Microcystis toxicity. Water quality was characterized by high light attenuation values caused by abiogenic turbidity and shading and absorbance from thick algal scums. The study highlights the potential for multidimensional environmental impacts associated with toxic cyanoprokaryote blooms, and the consequent implications for the management of shallow, inland and tropical lakes that are susceptible to toxic blooms.  相似文献   

13.
The Chesapeake Bay, like many other temperate estuaries, has exhibited dramatic declines in the abundance of submerged aquatic vegetation (SAV) during the later half of the twentieth century. Because of the functions SAV serve in maintaining a healthy estuarine ecosystem, SAV restoration has become an important component of Chesapeake Bay restoration. Specifically, recent water quality improvements in areas from which populations of Zostera marina (eelgrass) have been extirpated have suggested that Z. marina restoration could succeed. Early restoration efforts involved transplanting Z. marina plants from healthy source beds to restoration locations, but this was labor intensive, time consuming, expensive, and potentially detrimental to donor beds. This multi‐year project investigated new techniques for large‐scale Z. marina seed collection and processing and compared two seed dispersal methods to evaluate cost effectiveness. Tens of millions of mature Z. marina seeds were collected through snorkeling, SCUBA, or with a mechanical harvester. Seed storage conditions and processing techniques were manipulated in order to maximize seed yield. Seeds were dispersed using two methods: spring seed buoys and fall seed broadcasts. Our costs for planting 1 ha of bottom with Z. marina seeds ranged from $6,674 to $165,699 depending on seeding density and dispersal method used. The average cost per Z. marina seed was $0.17. Interannual variations in seed collection yield and seed viability after summer storage had great impact on final costs. Our results suggest that the use of seeds for large‐scale Z. marina restoration offers a competitive advantage to more traditional transplanting methods.  相似文献   

14.
Effects of winds, tides and river water runoff on the formation and disappearance of Alexandrium tamarense blooms in Hiroshima Bay, Japan were investigated using data from March to June of 1992–1998. The north wind at the initial growth phase of A. tamarense appeared to have prevented bloom formation by dispersing the organism offshore and/or through turbulent mixing. The decrease in the cell density at the end of the blooms was significantly affected by tidal mixing, indicating that the turbulent mixing induced by tidal excursions may be one of the factors terminating the bloom. Box model analyses applied to the data collected from the observations in 1996 and 1997 showed that river water runoff apparently dispersed the bloom, implying that stratification of the water column due to river water runoff is not necessary for the bloom formation. In conclusion, calm conditions with less wind and tidal mixing along with less river water runoff are considered to be important for the formation of the A. tamarense bloom in Hiroshima Bay, Japan.  相似文献   

15.
范春雷  Glibert.P.M 《生态科学》2003,22(3):199-204,212
1998年春末夏初,在美国的切萨皮克海湾的Choptank河出现了由微小原甲藻引发的大规模的赤潮。我们做了一系列与该藻赤潮发生机制有关的生理学特征实验。其中与氮吸收有关的生理学参数被应用于微小原甲藻赤潮发生动力学模型。为说明几个关键的生态及生理学过程在微小原甲藻赤潮发展和持续过程重的重要性,我们用该模型测试了几个关键过程点。模型测试的结果表明,河流输入充足的氮源是引起微小原甲藻赤潮的关键因素,而输入营养盐的组成结构对赤潮的发生并不起主要作用。然而在赤潮形成后,赤潮的维系依赖于还原态的氮源。在赤潮的维持过程中,微小原甲藻的倾向于吸收还原态的氮源的生理学特征起了很大作用。模型进一步表明微小原甲藻在低光照或黑暗条件下对氮的吸收仍然保持相当的吸收速率有利于该藻赤潮的发展。  相似文献   

16.
Oysters, Crassostrea virginica, from two populations, one from a coastal pond experiencing repeated dinoflagellate blooms (native), and the other from another site where blooms have not been observed (non-native), were analyzed for cellular immune system profiles before and during natural and simulated (by adding cultured algae to natural plankton) blooms of the dinoflagellate Prorocentrum minimum. Significant differences in hemocytes between the two oyster populations, before and after the blooms, were found with ANOVA, principal components analysis (PCA) and ANOVA applied to PCA components. Stress associated with blooms of P. minimum included an increase in hemocyte number, especially granulocytes and small granulocytes, and an increase in phagocytosis associated with a decrease in aggregation and mortality of the hemocytes, as compared with oysters in pre-bloom analyses. Non-native oysters constitutively had a hemocyte profile more similar to that induced by P. minimum than that of native oysters, but this profile did not impart increased resistance. The effect of P. minimum on respiratory burst was different according to the origin of the oysters, with the dinoflagellate causing a 35% increase in the respiratory burst of the native oysters but having no effect on that of the non-native oysters. Increased respiratory burst in hemocytes of native oysters exposed to P. minimum in both simulated and natural blooms may represent an adaptation to annual blooms whereby surviving native oysters protect themselves against tissue damage from ingested P. minimum.  相似文献   

17.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

18.
The spatial-temporal distribution of a dinoflagellate bloom dominated or co-dominated by Prorocentrum minimum was examined during autumn through early spring in a warm temperate, eutrophic estuary. The developing bloom was first detected from a web-based alert provided by a network of real-time remote monitoring (RTRM) platforms indicating elevated dissolved oxygen and pH levels in upper reaches of the estuary. RTRM data were used to augment shipboard sampling, allowing for an in-depth characterization of bloom initiation, development, movement, and dissipation. Prolonged drought conditions leading to elevated salinities, and relatively high nutrient concentrations from upstream inputs and other sources, likely pre-disposed the upper estuary for bloom development. Over a 7-month period (October 2001–April 2002), the bloom moved toward the northern shore of the mesohaline estuary, intensified under favorable conditions, and finally dissipated after a major storm. Bloom location and transport were influenced by prevailing wind structure and periods of elevated rainfall. Chlorophyll a within bloom areas averaged 106 ± 13 μg L−1 (mean ± 1 S.E.; maximum, 803 μg L−1), in comparison to 20 ± 1 μg L−1 outside the bloom. There were significant positive relationships between dinoflagellate abundance and TN and TP. Ammonium, NO3, and SRP concentrations did not decrease within the main bloom, suggesting that upstream inputs and other sources provided nutrient-replete conditions. In addition, PAM fluorometric measurements (09:00–13:00 h) of maximal PSII quantum yield (Fv/Fm) were consistently 0.6–0.8 within the bloom until late March, providing little evidence of photo-physiological stress as would have been expected under nutrient-limiting conditions. Nitrogen uptake kinetics were estimated for P. minimum during the period when that species was dominant (October–December 2001), based on literature values for N uptake by an earlier P. minimum bloom (winter 1999) in the Neuse Estuary. The analysis suggests that NH4+ was the major N species that supported the bloom. Considering the chlorophyll a concentrations during October and December and the estimated N uptake rates, phytoplankton biomass was estimated to have doubled once per day. Bloom displacement (January–February) coincided with higher diversity of heterotrophic dinoflagellate species as P. minimum abundance decreased. This research shows the value of RTRM in bloom detection and tracking, and advances understanding of dinoflagellate bloom dynamics in eutrophic estuaries.  相似文献   

19.
The historic decline of submersed aquatic vegetation (SAV) in mesohaline regions of Chesapeake Bay, United States involved a diversity of plant species. The recent modest recovery is mostly, however, associated with a single, prolific but ephemeral species, Ruppia maritima. Two previously abundant and more stable species, Potamogeton perfoliatus and Stuckenia pectinata, have shown virtually no evidence of recovery. Based on previous studies that demonstrated the ability of R. maritima stands to enhance water clarity and nutrient conditions for SAV growth, we hypothesized that these beds would serve as effective “nursery” areas to incite transplant success for other SAV. We conducted experiments in a two‐phase study at small and large spatial scales designed to explore this “nursery effect” as a restoration approach to increase plant species diversity. The first phase was conducted at small spatial scales to test effects of patch density by planting P. perfoliatus and S. pectinata into bare, sparse, and densely vegetated areas within three similar R. maritima beds in a tributary of Chesapeake Bay. Mean seasonal percent survivorship and shoot density were significantly higher in bare patches compared to vegetated patches. In the second phase of the study, P. perfoliatus was transplanted into separate R. maritima beds of different densities to test the effect of bed scale plant density on P. perfoliatus survival and growth. Transplant success of P. perfoliatus was positively correlated with the density of R. maritima among all sites.  相似文献   

20.
Harmful algal blooms (HABs) resulting in red discoloration of coastal waters in Sepanggar Bay, off Kota Kinabalu, Sabah, East Malaysia, were first observed in January 2005. The species responsible for the bloom, which was identified as Cochlodinium polykrikoides, coincided with fish mortalities in cage-cultures. Determinations of cell density between January 2005 and June 2006 showed two peaks that occurred in March–June 2005 and June 2006. Cell abundance reached a maximum value of 6 × 106 cells L−1 at the fish cage sampling station where the water quality was characterized by high NO3–N and PO4–P concentrations. These blooms persisted into August 2005, were not detected during the north–east monsoon season and occurred again in May 2006. Favorable temperature, salinity and nutrient concentrations, which were similar to those associated with other C. polykrikoides blooms in the Asia Pacific region, likely promoted the growth of this species. Identification of C. polykrikoides as the causative organism was based on light and scanning microscopy, and confirmed by partial 18S ribosomal DNA sequences of two strains isolated during the bloom event (GenBank accession numbers DQ915169 and DQ915170).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号