首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective grazing of a calanoid copepod Temora longicornis was measured during different stages of a Phaeocystis globosa bloom, in order to reveal (1) if T. longicornis feeds on single cells and/or colonies of P. globosa in the presence of alternative food sources, (2) if copepod food selection changes during the initiation, maintenance, collapse and decay of a P. globosa bloom and (3) if P. globosa dominated food assemblage provides a good diet for copepod egg production. Our results show low but constant feeding on small colonies of P. globosa, irrespective of the type or concentration of alternative food sources. In contrast, feeding on single cells was never significant, and the total contribution of P. globosa to carbon ingestion of T. longicornis was minor. T. longicornis fed most actively on the decaying colonies, whereas during the peak of the bloom copepods selected against P. globosa. Mostly, T. longicornis fed unselectively on different food particles: before the bloom, the major part of the diet consisted of diatoms, whereas during and after the bloom copepod diet was dominated by dinoflagellates and ciliates. Egg production was highest during the decay of the bloom, coinciding with highest proportional ingestion of heterotrophic organisms, but was not seriously reduced even during the peak of the bloom. We conclude that P. globosa blooms should not threaten survival of copepod populations, but the population recruitment may depend on the type (and concentration) of the dominant heterotrophs present during the blooms. Due to relatively unselective grazing, the impact of T. longicornis to the initiation of a Phaeocystis bloom is considered small, although grazing on decaying colonies may contribute to the faster termination of a bloom.  相似文献   

2.
The impact of Phaeocystis globosa population decline on the microbial community was studied during a mesocosm experiment, with irradiance regime and inorganic N:P ratios (4, 16, and 44) as controlling factors. Heterotrophic bacterial activity was closely related to enhanced (viral) lysis rates of P. globosa cells and disintegration of the colonies. Up to 85% of the bacterial C demand could be supplied by P. globosa-specific cellular C release. The bacterial populations with high DNA content became dominant (>70% of total). The bacterial community showed a rapid shift in composition to take advantage of the changing conditions during the demise of the P. globosa bloom. Members of the Alphaproteobacteria and the Bacteroidetes group emerged directly upon bloom decay. Multidimensional scaling analysis in conjunction with DGGE fingerprinting implied that clustering was more related to the availability of organic carbon (the collapse of the P. gobosa bloom) than to the nature of the phytoplankton growth-controlling nutrient. Reduced irradiance delayed the development of the P. globosa population and subsequently changes in the bacterial community composition. Disintegration of P. globosa colonies resulted in the formation of transparent exopolymeric particles (TEP) and aggregates, more so under P-depletion than under N-deficient conditions. The colonial matrix transformed into big aggregates under P-depleted conditions but remained largely as ghost colonies under N-depleted conditions. In the mesocosm with initial nitrogen and phosphorus supplied in the Redfield ratio, features intermediate to conditions with either N- or P-depletion were observed. It was hypothesized that TEP affected microbial population dynamics directly through bacterial colonization and indirectly through scavenging of predators and viruses.  相似文献   

3.
4.
The regulatory role of viruses on population dynamics of the prymnesiophyte Phaeocystis globosa was studied during a mesocosm experiment in relation to growth and loss by microzooplankton grazing and cell lysis. The mesocosms were conducted under varying light conditions (20 and 150 μmol photons m−2 s−1) and nutrient regime (inorganic nitrogen to phosphorus ratios of 4, 16 and 44). Overall, viruses infecting P. globosa (PgV) were found to be an important cause of cell lysis (30–100% of total lysis) and a significant loss factor (7–67% of total loss). We demonstrate that the morphology of P. globosa cells (solitary versus colonial) differently regulated viral control of P. globosa bloom formation. Reduced irradiance (20 μmol photons m−2 s−1) was provided for 11 days to select for the solitary cell morphotype. Viruses were able to restrict P. globosa bloom formation even after irradiance became saturating again (150 μmol photons m−2 s−1). Saturating light conditions from the start of the experiment allowed colony formation and because the colony-morphotype acted as a mechanism reducing viral infection bloom formation succeeded. Nutrient depletion, however, affected specifically the colonies that disintegrated while releasing single cells. Virus infection of these solitary cells resulted in the termination of the bloom. The nature of phytoplankton growth-limiting nutrient (nitrate and/or orthophosphate) did not seem to noticeably affect the level of viral control.  相似文献   

5.
The distribution and production of transparent exopolymer particles (TEPs) were studied quantitatively both in cultures of Phaeocystis antarctica Karsten (Prymnesiophyceae) and in natural phytoplankton assemblages in the Ross Sea, Antarctica. TEP production in culture was a function of growth rate and photosynthetic activity and was strongly influenced by photon flux density. The concentrations of TEP measured during a bloom, dominated by P. antarctica, were higher than those produced by coastal diatom blooms and were correlated with chlorophyll a (Chl a), being low at Chl a levels below 3 μgL?1 but increasing rapidly at greater Chl a concentrations. Because higher chlorophyll hek are dominated 4 larger P. antarctica colonies, this relationship suggests that TEP was produced primarily by sloughing and disintegration of the colonial matrix. TEP concentrations (both absolute and relative to Chl a) increased as the bloom's biomass increased. Vertical distributions of TEP and Chl a showed TEP: chlorophyll maxima at the bottom of the water column at most stations. Because TEP and floc formation are tightly coupled, we suggest that mucous flocs derived from TEP, rather than intact P. antarctica colonies, are the dominant component of aggregates and subsequent organic carbon vertical flux.  相似文献   

6.
Horn  Wolfgang 《Hydrobiologia》2003,491(1-3):185-192
The rates of development and food intake of the copepod Temora longicornis (Müller) were studied using artificial blooms of Phaeocystis globosa Scherffel under different conditions of nutrient limitation. Mesocosms with 800 l of natural seawater were manipulated by inoculation with cultured P. globosa and by addition of nitrogen and/or phosphorus, to obtain N- or P-limited blooms of P. globosa. During development and ageing of these blooms, water from the mesocosms was used as medium for incubation of nauplii of T. longicornis. Only moderate rates of naupliar development as well as high rates of mortality were observed, irrespective of major differences of nutrient conditions and density of P. globosa. Grazing by the nauplii on P. globosa seemed to be low, suggesting a low food quality of this alga at all physiological conditions studied. The results of this study indicate a low capability of T. longicornis nauplii for control of nuisance algal blooms caused by P. globosa.  相似文献   

7.
The concentration of transparent exopolymeric particles (TEP) was monitored during Phaeocystis globosa blooms that developed in mesocosms under different initial N:P ratios (from N- to P-limited conditions). TEP concentration was measured using the microscopic (TEPmicro, ppm) and the colorimetric (TEPcolor, Xanthan equiv. L−1) methods. TEP concentrations varied from 5 to >75 ppm and from 60 to >1500 μg Xanthan equiv. L−1, and were relatively low until the mesocosms reached nutrient (either N or P) depletion and then increased abruptly. From the TEPmicro versus TEPcolor concentrations comparison and from their relation to chlorophyll a concentrations, two phases for the dynamics of TEP production were identified: (1) production through active release of precursors during the growth phase of P. globosa — defined as TEP1 — and their integration into the TEP pool through coagulation processes; (2) release of large TEP from the mucilaginous matrix of P. globosa colonies subsequent to disruption caused by nutrient depletion — defined as TEP2 — and their direct integration into the TEP pool outside the constraint of coagulation. The formation of a multiorigin TEP pool during P. globosa blooms may have implications for the fate of the blooms, due to difference in TEP bioreactivity according to their source and to difference in timing and intensity of TEP1 versus TEP2 production according to N- or P-depletion. For P. globosa blooms developing under N-limiting conditions, the transition from the first source (i.e. TEP1) to the second one (i.e. TEP2) was a slow and continuous process. In contrast, the P. globosa bloom developing under P-limiting conditions showed the sudden formation of heavy mucous aggregates when P became depleted, that may have been caused by a massive release of TEP2. Our study suggests that the nutrient regime may control the export vs. retention balance during P. globosa blooms, via production of a multiorigin TEP pool.  相似文献   

8.
霍铱萍  王小冬  王艳 《生态学报》2020,40(16):5834-5843
浮游动物的摄食信息能增大棕囊藻囊体体积,囊体形成被认为是棕囊藻的诱导性防御机制。利用桡足类火腿伪镖水蚤和异养甲藻海洋尖尾藻释放的摄食信息,研究了诱导性防御对球形棕囊藻和布氏双尾藻的竞争的影响。结果表明,球形棕囊藻接收了火腿伪镖水蚤和海洋尖尾藻释放的摄食信息之后形成更大的囊体。防御启动后的球形棕囊藻比未接收摄食信息的球形棕囊藻更快地形成囊体,且囊体维持的时间更长。对照组和火腿伪镖水蚤摄食信息诱导的球形棕囊藻的生物体积比布氏双尾藻更高,且球形棕囊藻在竞争中占优势;而海洋尖尾藻摄食信息诱导的球形棕囊藻生物体积低于布氏双尾藻,且球形棕囊藻相对布氏双尾藻的竞争力下降。微型浮游动物海洋尖尾藻摄食信息导致球形棕囊藻相对硅藻布氏双尾藻的竞争力的下降,有利于解释硅藻先于棕囊藻发生藻华。  相似文献   

9.
Evidence is provided showing that in two species of Phaeocystis (P. globosa and P. pouchetii) the colonial cells possess a much higher growth rate than the single cells when grown under identical conditions. Based on the DNA-cell-cycle method gross growth rate of colony cells exceeded those of co-occurring single cells by a factor 1.5 up to 3.8. The dominance of colonies in blooms of Phaeocystis can therefore be primarily due to their significantly high growth rate allowing a rapid bloom formation.Both Phaeocystis species showed ultradian growth but differed in timing of the initiation of the second DNA replication phase. In both species the first DNA-replication period started at the end of the (local) light period and was completed in the early dark period. In P. globosa this was immediately followed by the second DNA-replication period (first half of the dark period). In P. pouchetii this process was delayed by ca. 12 h until the middle of the light period (local noon).Flow cytometric analysis of the cell size and chlorophyll fluorescence showed little variation in colony and single cells of P. pouchetii. In contrast, colonies of P. globosa showed often the presence of two cell morphs, co-occurring in the same colony. The size of both morphs was identical but they differed in chlorophyll fluorescence up to a factor 4. In general the high chlorophyll cell morph dominated (>70% of the total colony cells). Both colony cell morphs were observed in cultures, mesocosms differing in N/P ratio but also in the field.  相似文献   

10.
The worldwide colony-forming haptophyte phytoplankton Phaeocystis spp. are key organisms in trophic and biogeochemical processes in the ocean. Many organisms from protists to fish ingest cells and/or colonies of Phaeocystis. Reports on specific mortality of Phaeocystis in natural plankton or mixed prey due to grazing by zooplankton, especially protozooplankton, are still limited. Reported feeding rates vary widely for both crustaceans and protists feeding on even the same Phaeocystis types and sizes. Quantitative analysis of available data showed that: (1) laboratory-derived crustacean grazing rates on monocultures of Phaeocystis may have been overestimated compared to feeding in natural plankton communities, and should be treated with caution; (2) formation of colonies by P. globosa appeared to reduce predation by small copepods (e.g., Acartia, Pseudocalanus, Temora and Centropages), whereas large copepods (e.g., Calanus spp.) were able to feed on colonies of Phaeocystis pouchetii; (3) physiological differences between different growth states, species, strains, cell types, and laboratory culture versus natural assemblages may explain most of the variations in reported feeding rates; (4) chemical signaling between predator and prey may be a major factor controlling grazing on Phaeocystis; (5) it is unclear to what extent different zooplankton, especially protozooplankton, feed on the different life forms of Phaeocystis in situ. To better understand the mechanisms controlling zooplankton grazing in situ, future studies should aim at quantifying specific feeding rates on different Phaeocystis species, strains, cell types, prey sizes and growth states, and account for chemical signaling between the predator and prey. Recently developed molecular tools are promising approaches to achieve this goal in the future.  相似文献   

11.
Studies of the phytoplankton ecology in different localities in north-Norwegian fjords, the White Sea and the Barents Sea were carried out in spring and early summer to investigate the contribution of single and colonial stages of Phaeocystis pouchetii to phytoplankton abundance. Three different types of flagellated and four colonial cells were observed in all localities. P. pouchetii was rare under the ice of the Barents and White Seas, but their abundance increased rapidly during ice retreat. Single cell C dominated over colonial cell C, often by 50 times or more. The highest share of colonial cells was encountered in April in northern Norwegian fjords, in May in the Barents Sea and in May–June in the White Sea. At times the single cell dominated the total P. pouchetii biomass in Balsfjord (April 1999, 2001) with hardly any colonies present. In the White Sea colonies of P. pouchetii were less abundant than in the other regions. Cell carbon of P. pouchetii colonies appears never to be as dominating in the north-eastern North Atlantic as P. globosa blooms in coastal regions such as the southern North Sea. However, the lobal matrix of P. pouchetii colonies appears to be less solid than that of P. globosa and partly dissolution of the colony matrix during handling and storage of fixes samples induces uncertainty about the absolute numbers of P. pouchetii colonial cell counts. Despite of that, single cells of P. pouchetii seem to dominate significantly over colonial cell biomass at most sites and during some years and in some regions colonial cells seem rare. We speculate that top-down regulation of Phaeocystis spp. blooms possibly determines the ratio between single and colonial cells.  相似文献   

12.
An Arctic clone ofPhaeocystis pouchetii LAGERHEIM was compared toPhaeocystis globosa SCHERFFEL isolated from the southern North Sea with regard to temperature tolerance and colony shapes. Already youngP.pouchetii colonies (<100 m) show the typical distribution of the cells in groups, separated from each other by wide zones of cell-free mucilage; the maximum colony size is ca 2 mm in diameter.P.pouchetii colonies form clouds with bubble-like vesicles, spherical colony-shapes are seldom found.P.globosa colonies are spherical up to a size of 2 mm; the cells are distributed homogeneously over the periphery of the colonies. A pouchetii-like distribution of cells never occurs either in the spherical young colonies or in the pear-shaped old colonies (size up to 8 mm). A development from the colony shape of the globosa-type to the pouchetii-type or vice versa was never found. Therefore the colony shape has to be considered a constant distinctive character. Single cells ofP.pouchetii andP.globosa cannot be separated from each other by using the light microscope; this also holds for the flagellates and the non-motile cells.P.pouchetii grows well between 0°C and 14°C,P.globosa between 4°C and 22°C, respectively. Because of the distinctive differences in the morphology of the colonies and the differences in temperature tolerances we propose thatPhaeocystis globosa should no longer be considered conspecific withPhaeocystis pouchetii.  相似文献   

13.
Phytoplankton produce large amounts of polysaccharide gel material known as transparent exopolymer particles (TEP). We investigated the potential links between phytoplankton-derived TEP and microbial community structure in the sea surface microlayer and underlying water at the English Channel time-series station L4 during a spring diatom bloom, and in two adjacent estuaries. Major changes in bacterioneuston and bacterioplankton community structure occurred after the peak of the spring bloom at L4, and coincided with the significant decline of microlayer and water column TEP. Increased abundance of Flavobacteriales and Rhodobacterales in bacterioneuston and bacterioplankton communities at L4 was significantly related to the TEP decline, indicating that both taxa could be responsible. The results suggest that TEP is an important factor in determining microbial diversity in coastal waters, and that TEP utilisation could be a niche occupied by Flavobacteriales and Rhodobacterales.  相似文献   

14.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

15.
A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.  相似文献   

16.
海洋浮游植物与生物碳汇   总被引:11,自引:0,他引:11  
孙军 《生态学报》2011,31(18):5372-5378
系统描述了浮游植物与海洋碳汇相关的几个过程:初级生产、浮游植物沉降、浮游动物粪球打包沉降、经典食物链碳汇、溶解有机碳生产和转化、透明胞外聚合颗粒物(TEP)凝聚网,和CO2分压升高(海水酸化)影响下浮游植物功能群转变及中国海可能的生物碳汇前景展望。提出海洋初级生产过程和TEP凝聚网过程是中国海生物碳汇的关键过程,而中国海的黄海中部及长江口区域是生物碳汇研究的重点区域,建议将硅藻及其碳汇过程作为今后研究的重点。  相似文献   

17.
This study examined benthic and pelagic rate processes from the perspective of benthic dissolved organic matter (DOM) and its possible role in Aureococcus anophagefferens population dynamics. Sampling was conducted in Quantuck Bay, Long Island, New York, at three times in the summer of 2000 and two times in the summer of 2001. A. anophagefferens exhibited a large bloom between the May and July 2000 sample periods, but a smaller bloom was captured in the September 2000 sampling. Densities throughout 2001 were significantly lower than during 2000. There were few differences in most parameters measured between years, but the largest difference was the seasonal increase in both particulate (POM) and dissolved organic matter (DOM) during 2000 that was not observed during 2001. In particular, DOP accumulated the most, followed by DON and DOC, which resulted in significant seasonal decreases in the C:N:P ratios of the DOM pools. On the contrary, changes in elemental ratios of POM were not observed. The seasonal accumulation of DON appeared to be driven largely (50%) by the flux of DON from the benthos in 2000, but during 2001, all measured DON fluxes were into the sediment from the water column. This is consistent with the lack of accumulation during this year. There was little evidence for changes in microzooplankton grazing pressure between 2000 and 2001, and therefore the accumulation of DON and DOP during 2000 could have provided a competitive advantage to A. anophagefferens over other picoalgal species (e.g., Synechococcus) resulting in the significant blooms observed in 2000.  相似文献   

18.
Experiments were conducted with natural plankton assemblages from two areas in Great South Bay (GSB) and the Peconic Bays Estuary System, NY, to compare the rates of growth and pelagic grazing mortality of Aureococcus anophagefferens with co-occurring phytoplankton. We hypothesized that A. anophagefferens would experience low mortality rates by microbial herbivores (relative to feeding pressure on other algae) thus providing it with a competitive advantage within the phytoplankton community. In fact, substantial rates of mortality were observed in nearly every experiment in our study. However, mortality rates of A. anophagefferens were less than intrinsic growth rates of the alga during late spring and early summer in Great South Bay, resulting in positive net growth rates for the alga during that period. This timing coincided with the development of a brown tide in this estuary. Similarly, growth rates of the alga also exceeded mortality rates during bloom development in natural plankton assemblages from the Peconic Bays Estuary System held in mesocosms. In contrast to the situation for A. anophagefferens, growth rates of the total phytoplankton assemblage, and another common picoplanktonic phytoplankter (Synechococcus spp.), were frequently less than their respective mortality rates. Mortality rates of A. anophagefferens in both systems were similar to growth rates of the alga during later stages of the bloom. Laboratory studies confirmed that species of phagotrophic protists that consume A. anophagefferens (at least in culture) are present during brown tides but preference for or against the alga appears to be species-specific among phagotrophic protists. We conclude that two scenarios may explain our results: (1) protistan species capable of consuming the brown tide alga were present at low abundances during bloom initiation and thus not able to respond rapidly to increases in the intrinsic growth rate of the alga, or (2) the brown tide alga produced substance(s) that inhibited or retarded protistan grazing activities during the period of bloom initiation. The latter scenario seems less likely given that significant mortality of A. anophagefferens was measured during our field study and mesocosm experiment. However, even a minor reduction in mortality rate due to feeding selectivity among herbivores might result in a mismatch between growth and grazing of A. anophagefferens that could give rise to significant net population growth of this HAB species. Either scenario infers an important role for trophic interactions within the plankton as a factor explaining the development of brown tides in natural ecosystems.  相似文献   

19.
Plant-derived extracts and phytochemicals have long been a subject of research in an effort to develop alternatives to conventional insecticides but with reduced health and environmental impacts. In this review we compare the bioactivities of some plant extracts with those of commercially available botanical insecticides against two important agricultural pests, the cabbage looper, Trichoplusia ni and the armyworm, Pseudaletia unipuncta. Test materials included extracts of Azadirachta indica (neem), A. excelsa (sentang), Melia volkensii, M. azedarach (Chinaberry) and Trichilia americana, (all belonging to the family Meliaceae) along with commercial botanical insecticides ryania, pyrethrum, rotenone and essential oils of rosemary and clove leaf. Most of the extracts and botanicals tested proved to be strong growth inhibitors, contact toxins and significant feeding deterrents to both lepidopteran species. However, there were interspecific differences with T. ni generally more susceptible to the botanicals than the armyworm, P. unipuncta. All botanicals were more inhibitory to growth and toxic (through feeding) to T. ni than to P. unipuncta, except for M. azedarach which was more toxic to P. unipuncta than to T. ni. Athough, pyrethrum was the most toxic botanical to both noctuids, A. indica, A. excelsa, and M. volkensii were more toxic than ryania, rotenone, clove oil and rosemary oil for T. ni. As feeding deterrents, pyrethrum was the most potent against T. ni, whereas A. indica was the most potent against the armyworm. Based upon growth inhibition, chronic toxicity, and antifeedant activity, some of these plant extracts have levels of activity that compare favorably to botanical products currently in commercial use and have potential for development as commercial insecticides.  相似文献   

20.
This study tested whether the dinoflagellate Prorocentrum minimum is nutritionally insufficient or toxic to the copepod Acartia tonsa. Experiments were carried out with adult female A. tonsa and the P. minimum clone Exuv, both isolated from Long Island Sound. Initially, the functional and numerical responses of A. tonsa feeding on exponentially growing P. minimum cells were characterized. These experiments revealed that A. tonsa readily ingested P. minimum cells, up to the equivalent of 200% of body carbon day−1, but egg production was relatively low, with a maximum egg production rate of 22% of body carbon day−1. Hence, the egg production efficiency (egg carbon produced versus cell carbon ingested) was low (10%). In a separate experiment, ingestion and egg production rates were measured as a function of food concentration with cells in different growth stages (early-exponential, late-exponential/early-stationary, and late-stationary growth phase) to simulate conditions during a bloom. There was no indication that cells in the stationary phase resulted in lower ingestion or egg production rates relative to actively growing cells. Egg hatching success remained high (>80%) and independent of the cell growth phase. In a third experiment specifically designed to test the hypothesis that P. minimum is toxic, ingestion, egg production and egg hatching success were measured when females were fed mixtures of P. minimum and the diatom Thalassiosira weissflogii, but in which total food concentration was held constant and the proportion of P. minimum in the mixed diet varied. A. tonsa readily ingested P. minimum when it was offered in the mixed diet, with no detrimental effects on egg production or egg hatching observed. Supplementing P. minimum with T. weissflogii increased both the egg production rate and the egg production efficiency. It is concluded that P. minimum is nutritionally insufficient, but not toxic to A. tonsa. Finally, it is estimated that in the field grazing by A. tonsa is approximately equivalent to 30% of the maximum daily growth rate of P. minimum. Hence, copepod grazing cannot be ignored in field and modeling studies of the population dynamics of P. minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号