首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
We determined the effects of chromatin structure on template accessibility to replication factors and used three different templates as substrates for simian virus 40 (SV40) DNA replication in vitro: native and salt-treated SV40 minichromosomes and protein-free SV40 DNA. Native minichromosomes contain histone H1 and numerous nonhistone proteins in addition to the core histones, whereas salt-treated minichromosomes carry essentially only core histones. We reasoned that the less densely packed salt-treated minichromosomes should be more effective replication templates due to their more extended configuration. However, contrary to this expectation, we found that native minichromosomes replicated with significantly higher efficiency than salt-treated minichromosomes, while protein-free DNA was most active as a replication template. The higher replication efficiency of native minichromosomes was due to two activities bound to the chromatin, which were identified as DNA topoisomerases I and II. By using chromatin substrates of different general configurations, we also showed that the overall chromatin structure determines accessibility to topoisomerases I and II and thereby the efficiency of replicative chain elongation.  相似文献   

2.
The nuclear matrix plays an important role in simian virus 40 (SV40) DNA replication in vivo, since functional replication complexes containing large T and replicating SV40 minichromosomes are anchored to this structure (R. Schirmbeck and W. Deppert, J. Virol. 65:2578-2588, 1991). In the present study, we have analyzed the course of events leading from nuclear matrix-associated replicating SV40 minichromosomes to fully replicated minichromosomes and, further, to their encapsidation into mature SV40 virions. Pulse-chase experiments revealed that newly replicated SV40 minichromosomes accumulated at the nuclear matrix and were directly encapsidated into DNase-resistant SV40 virions at this nuclear structure. Alternatively, a small fraction of newly replicated minichromosomes left the nuclear matrix to associate with the cellular chromatin. During the course of infection, progeny virions continuously were released from the nuclear matrix to the cellular chromatin and into the cytoplasm-nucleoplasm. The bulk of SV40 progeny virions, however, remained at the nuclear matrix until virus-induced cell lysis.  相似文献   

3.
F Azorin  A Rich 《Cell》1985,41(2):365-374
Proteins dissociated from SV40 minichromosomes by increasing NaCl concentration were tested for their binding to Z-DNA [Br-poly(dG-dC)] and B-DNA [poly (dG-dC)]. Z-DNA binding proteins are largely released in 0.2 M NaCl whereas most B-DNA binding proteins are not released until 0.6 M NaCl. Incubation of SV40 minichromosomes with Z-DNA-Sephadex in low salt solution results in proteins with Z-DNA binding activity (PZ proteins). These proteins bind to negatively supercoiled DNAs containing left-handed Z-DNA but not to relaxed DNAs. They compete with anti-Z-DNA antibodies in binding to negatively supercoiled DNAs. The binding is tighter to negatively supercoiled SV40 DNA than to other plasmids, suggesting sequence-specific Z-DNA binding. PZ proteins binding to negatively supercoiled SV40 DNA interfere with cleavage at the Sph I sites, within the 72 bp repeat sequences of the viral control region, but not with cleavage at the Bgl I site, at the origin of replication. Removal of PZ proteins also exposes the Sph I sites in the SV40 minichromosomes while addition of PZ proteins makes the sites inaccessible.  相似文献   

4.
5.
6.
The simian virus 40 (SV40) enhancer contains three 8-bp purine-pyrimidine alternating sequences which are known to adopt the left-handed Z-DNA conformation in vitro. In this paper, we have undertaken the determination of the DNA conformation adopted by these Z-motifs in the SV40 minichromosome. We have analyzed the presence of Z-DNA through the change in linkage which should accompany formation of this left-handed conformation. Our results indicate that, regardless of the precise moment of the viral lytic cycle at which minichromosomes are harvested and the condition of the transfected DNA, either relaxed or negatively supercoiled, none of the three Z motifs of the SV40 enhancer exist to a significant extent as Z-DNA in SV40 minichromosomes. The SV40 enhancer adopts predominantly a right-handed B-DNA conformation in vivo.  相似文献   

7.
Reassortment of Simian Virus 40 DNA During Serial Undiluted Passage   总被引:4,自引:4,他引:0       下载免费PDF全文
Alterations occur in the supercoiled form of viral DNA after the serial undiluted passaging of simian virus (SV) 40. We have identified a portion of the viral genome which is amplified during this process. These SV40 DNA sequences represent about 30% of the viral genetic information and are present in a reiterated form in twisted circular molecules prepared from purified virions. In addition, reiterated and unique green monkey DNA sequences are incorporated into supercoiled viral DNA. The cellular DNA appears to be inserted at numerous locations in the DNA I molecules.  相似文献   

8.
The binding of anti-Z-DNA antibody preparations to negatively supercoiled, protein-free SC40 DNA was analyzed. Covalent cross-linking with 0.1% glutaraldehyde followed by DNA restriction endonucleolytic fragmentation and nitrocellulose filtration allowed accurate mapping of antibody binding sites. The critical superhelical density necessary to allow antibody binding was -sigma = 0.056. The major region of antibody-DNA interaction was found within an SV40 segment spanning viral map positions 40 to 474. This region coincides with the nucleosome free region in SV40 minichromosomes and harbours the early and late promoter regions including the SV40 enhancer segment. Although it is unknown whether alternative, non-B-DNA conformations are generated in vivo within SV40 minichromosomes our results emphasize the high degree of DNA structural flexibility that can be realized under negative torsional stress.  相似文献   

9.
10.
Sundin and Varshavsky (J. Mol. Biol. 132:535-546, 1979) found that nearly two-thirds of simian virus 40 (SV40) minichromosomes obtained from nuclei of SV40-infected cells become singly nicked or cleaved across both strands after digestion with staphylococcal nuclease at 0 degrees C. The same treatment of SV40 DNA causes complete digestion rather than the limited cleavages produced in minichromosomal DNA. We have explored this novel behavior of the minichromosome and found that the nuclease sensitivity is dependent upon the topology of the DNA. Thus, if minichromosomes are pretreated with wheat germ DNA topoisomerase I, the minichromosomal DNA is completely resistant to subsequent digestion with staphylococcal nuclease at 0 degrees C. If the minichromosome-associated topoisomerase is removed, virtually all of the minichromosomes are cleaved to nicked or linear structures by the nuclease treatment. The cleavage sites are nonrandomly located; instead they occur at discrete loci throughout the SV40 genome. SV40 minichromosomal DNA is also cleaved to nicked circles and full-length linear fragments after treatment with the single strand-specific endonuclease S1; this cleavage is also inhibited by pretreatment with topoisomerase I. Thus, it may be that the nuclease sensitivity of minichromosomes is due to the transient or permanent unwinding of discrete regions of their DNA. Direct comparisons of the extent of negative supercoiling of native and topoisomerase-treated SV40 minichromosomes revealed that approximately two superhelical turns were removed by the topoisomerase treatment. The loss of these extra negative supercoils from the DNA probably accounts for the resistance of the topoisomerase-treated minichromosomes to the staphylococcal and S1 nucleases. These findings suggest that the DNA in SV40 intranuclear minichromosomes is torsionally strained. The functional significance of this finding is discussed.  相似文献   

11.
Minichromosome of simian virus 40: presence of histone HI.   总被引:37,自引:16,他引:21       下载免费PDF全文
In contrast to conclusions of previous studies /I-3/ claiming the absence of histone HI from the SV40 and polyoma viral minichromosomes we have found that a preparation of purified SV40 minichromosomes does contain histone HI. The content of HI in relation to other four histones in the SV40 minichromosomes is close to that in the cellular chromatin. Histone HI in the isolated SV40 minichromosomes is bound apparently to internucleosomal DNA stretches as was shown already for HI in the cellular chromatin /4/. In addition it was found that more than 90% of the purified SV40 minichromosomes migrated as a single discrete deoxyribonucleoprotein band upon agarose gel electrophoresis.  相似文献   

12.
In addition to free SV40 minichromosomes in the compact form, complete virions were obtained from the nuclear extract of productively infected cells. Capsid proteins VP1, VP2, and VP3, as well as histones, were observed on electrophoregrams of proteins prepared from virions. In contrast to the widely accepted view, histone H1 was found in virions in stoichiometric amounts with respect to other histones. The same is true for virions isolated by a conventional method. Free minichromosomes present in infected cells contain all histones and practically no viral proteins.  相似文献   

13.
We operationally define two forms of SV40 minichromosomes, a 75S-form, prepared at low salt concentration, referred to as native minichromosomes, and a 50S-form, obtained after treatment with 0.5M potassium acetate, the salt-treated minichromosomes. Both preparations of minichromosomes serve well as templates for replication in vitro. Their respective replication products are strikingly different: replicated native minichromosomes contain a densely packed array of the maximal number of nucleosomes whereas replicated salt-treated minichromosomes carry, on average, half of the maximal number. We conclude that in both cases parental nucleosomes are transferred to progeny DNA, and, in addition, that an assembly of new nucleosomes occurs during the replication of native minichromosomes. This is apparently due to the presence of a nucleosome assembly factor as a constituent of native minichromosomes that dissociates upon treatment with salt. We further show that preparations of minichromosomes usually contain significant amounts of copurifying hnRNP particles and SV40 virion precursor particles. However, these structures do not detectably affect the replication and the chromatin assembly reactions.  相似文献   

14.
Changes in DNA linking number have been observed in plasmid DNA purified from E. coli cells after the cells were treated with chloroquine. Chloroquine, a DNA intercalating drug, unwinds the DNA, decreasing the levels of negative supercoiling. Following this in vivo topological perturbation, within minutes DNA gyrase decreases DNA linking number producing more negatively supercoiled DNA topoisomers. Following the removal of the drug from cells, within minutes topoisomerase 1 or DNA gyrase increases the linking number restoring the original level of supercoiling. Analogous changes in DNA linking number after addition of chloroquine are observed in purified plasmid DNA, and in purified SV40 minichromosomes in the presence of exogenous topoisomerase. Changes in linking number are also observed in SV40 chromosomes in isolated nuclei and in SV40 DNA purified from CV-1 cells following topological perturbation with chloroquine. These results suggest that eukaryotic cells may have mechanisms to maintain a defined level of DNA supercoiling.  相似文献   

15.
The methylation profile of histone H4 on lysine 20 in SV40 chromatin during an infection was investigated using ChIP analyses with antibodies to monomethyl (H4K20me1), dimethyl (H4K20me2), and trimethyl (H4K20me3) histone H4. H4K20me1 was found in late-transcribing, uncoating, encapsidating, and replicating minichromosomes as well as in the SV40 chromatin present in virions. Its prevalence was greatest in virions and least in minichromosomes present between 4 and 24 hours post-infection. In contrast, H4K20me2 did not appear to be present and H4K20me3 appeared to be present only in minichromosomes obtained 30 minutes post-infection. The presence of H4K20me1 late in infection in replicating minichromosomes and its relative enrichment in virions suggested that it played a role in the encapsidation process. In contrast, the presence of H4K20me3 at the earliest stages of the infection and its subsequent relatively rapid loss along with SV40 chromatin suggested that it was functioning during the uncoating process.  相似文献   

16.
When compact simian virus 40 (SV40) minichromosomes are treated with staphylococcal nuclease at 0 °C under limit-digest conditions, about one-third of the minichromosomes remain resistant to nuclease, a third of them are nicked, while the remaining third suffer one and only one double-stranded cut. Results show that each cleaved minichromosome is cut only once and afterwards becomes resistant to further fragmentation. This is in marked contrast to the action of staphylococcal nuclease at 37 °C, which leads to a rapid fragmentation of all minichromosomes to oligo- and mononucleosomes.The SV40 linear DNA III produced by low-temperature nuclease digestion of minichromosomes was redigested with single-cut restriction endonucleases. By this mapping procedure it was determined that the location of the staphylococcal nuclease cut is neither unique nor random; it occurs at a number of discrete sites on the DNA, half of all cuts being concentrated at the origin of replication and nearby in the “late” portion of the SV40 genome. Control experiments have shown that when staphylococcal nuclease digests naked SV40 DNA at 0 °C it does not “hesitate” after the first cut. Although initial cuts in the purified DNA are non-random in location, their distribution is quite different from that generated by a low-temperature nuclease digestion of compact SV40 minichromosomes. Possible interpretations of these results are discussed in view of the recent finding that a specific region of the SV40 genome is uniquely exposed in the minichromosome (Varshavsky et al., 1978, 1979; Scott &; Wigmore, 1978).  相似文献   

17.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

18.
19.
《Epigenetics》2013,8(6):528-534
In eukaryotes, epigenetic information can be encoded in parental cells through modification of histones and subsequently passed on to daughter cells in a process known as transgenerational epigenetic regulation. Simian Virus 40 (SV40) is a well-characterized virus whose small circular DNA genome is organized into chromatin and, as a consequence, undergoes many of the same biological processes observed in cellular chromatin. In order to determine whether SV40 is capable of transgenerational epigenetic regulation, we have analyzed SV40 chromatin from minichromosomes and virions for the presence of modified histones using various ChIP techniques and correlated these modifications with specific biological effects on the SV40 life cycle. Our results demonstrate that, like its cellular counterpart, SV40 chromatin is capable of passing biologically relevant transgenerational epigenetic information between infections.  相似文献   

20.
In eukaryotes, epigenetic information can be encoded in parental cells through modification of histones and subsequently passed on to daughter cells in a process known as transgenerational epigenetic regulation. Simian Virus 40 (SV40) is a well-characterized virus whose small circular DNA genome is organized into chromatin and, as a consequence, undergoes many of the same biological processes observed in cellular chromatin. In order to determine whether SV40 is capable of transgenerational epigenetic regulation, we have analyzed SV40 chromatin from minichromosomes and virions for the presence of modified histones using various ChIP techniques and correlated these modifications with specific biological effects on the SV40 life cycle. Our results demonstrate that, like its cellular counterpart, SV40 chromatin is capable of passing biologically relevant transgenerational epigenetic information between infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号