首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Nitrite reductase from Escherichia coli K12 requires the presence of NAD+, one of the products of the reduction of NO2-by NADH, for full activity. The effect is observed with both crude extracts and purified enzyme. NAD+ also acts as a product inhibitor at high concentrations, and plots of initial rate against NAD+ concentration are bell-shaped. The maximum occurs at about 1 mM-NAD+, but increases with increasing NADH concentration. In the presence of 1 mM-NAD+ and saturating NO2-(2mM) the Michaelis constant for NADH is about 16 micron. The Michaelis constant for NO2-is about 5 micron and is largely independent of the NAD+ concentration. Similar but more pronounced effects of NAD+ are observed with hydroxylamine as electron acceptor instead of NO2-. The maximum rate of NADH oxidation by hydroxylamine is about 5.4 times greater than the maximum rate of NADH oxidation by NO2- when assayed with the same volume of the same preparation of purified enzyme. The Michaelis constant for hydroxylamine is 5.3 mM, however, about 1000 times higher than for NO2-. These results are consistent with a mechanism in which the same enzyme-hydroxylamine complex occurs as an intermediate in both reactions.  相似文献   

6.
7.
8.
9.
An assay for the determination of NAD has been developed utilizing the coupled oxidoreductase activity of liver alcohol dehydrogenase. The coupled reaction between ethanol and lactaldehyde is driven by the removal of one of the products, acetaldehyde, into a semicarbazide solution. Under the stated conditions, a linear relationship exists between the absorbance of acetaldehyde semicarbazone and NAD concentration in the reaction mixture. The principal advantages of this method are speed and simplicity. NAD+ and NADH are assayed by the same procedure, which is also used to measure NADP+ and NADPH after these nucleotides have been converted to NAD+ and NADH, respectively.  相似文献   

10.
11.
12.
13.
14.
15.
16.
We describe the use of column chromatography on the nonpolar adsorbent. Amberlite XAD-2, and on silanized silica gel in the desalting and partial purification of cobalamins. These techniques are both simpler and more versatile than phenol extraction, without sacrificing efficiency. In addition, a solvent system for thin-layer chromatography on silanized silica gel is described which rapidly separates naturally occurring cobalamins.  相似文献   

17.
18.
19.
The enzymie system in mung bean seedlings which earlier workers characterized as a diaphorase capable of oxidizing the 1,2- and 1,6-dihydropyridine isomers of NADH is, in fact, a phenol oxidase. The NAD species whose oxidation was observed is actually the dimeric 1-electron product obtained in the electrolytic reduction of NAD+ solutions. The unidentified “cofactor” required along with the enzyme for the oxidation of the dimer is probably a naturally occurring phenol. Similar activity is found in a variety of plants, including other types of beans as well as corn, cotton, and wheat. The dimer is also reactive with respect to a commercial mushroom phenol oxidase preparation. It cannot be stated whether the NAD dimer is in any sense a natural reactant in such systems, but the supposedly unusual mung bean activity is clarified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号