首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations cause or influence the prevalence of many diseases. In human tissues, somatic point mutations have been observed at fractions at or below 4/10,000 and 5/100,000 in mitochondrial and nuclear DNA, respectively. In human populations, fractions for the multiple alleles that code for recessive deleterious syndromes are not expected to exceed 5 x 10(-4). Both nuclear and mitochondrial point mutations have been measured in human cells and tissues at fractions approaching 10(-6) using constant denaturant capillary electrophoresis (CDCE) coupled with high-fidelity PCR (hifiPCR). However, this approach is only applicable to those target sequences (approximately 100 bp) juxtaposed with a 'clamp', a higher-melting-temperature sequence, in genomic DNA; such naturally clamped targets represent approximately 9% of the human genome. To open up most of the human genome to rare point-mutational analysis, a high-efficiency DNA ligation procedure was recently developed so that a clamp could be attached to any target of interest. We coupled this ligation procedure with prior CDCE/hifiPCR and achieved a sensitivity of 2 x 10(-5) in human cells for the first time using an externally attached clamp. At this sensitivity, somatic mutations, each representing an anatomically distinct cluster of cells (turnover unit) derived from a mutant stem cell, may be detected in a series of tissue samples, each containing as many as 5 x 10(4) turnover units. Additionally, rare inherited mutations may be scanned in pooled DNA samples, each derived from as many as 10(5) persons.  相似文献   

2.
Mutations cause or influence the prevalence of many diseases. In human tissues, somatic point mutations have been observed at fractions at or below 4/10 000 and 5/100 000 in mitochondrial and nuclear DNA, respectively. In human populations, fractions for the multiple alleles that code for recessive deleterious syndromes are not expected to exceed 5 × 10–4. Both nuclear and mitochondrial point mutations have been measured in human cells and tissues at fractions approaching 10–6 using constant denaturant capillary electrophoresis (CDCE) coupled with high-fidelity PCR (hifiPCR). However, this approach is only applicable to those target sequences (~100 bp) juxtaposed with a ‘clamp’, a higher-melting-temperature sequence, in genomic DNA; such naturally clamped targets represent ~9% of the human genome. To open up most of the human genome to rare point-mutational analysis, a high-efficiency DNA ligation procedure was recently developed so that a clamp could be attached to any target of interest. We coupled this ligation procedure with prior CDCE/hifiPCR and achieved a sensitivity of 2 × 10–5 in human cells for the first time using an externally attached clamp. At this sensitivity, somatic mutations, each representing an anatomically distinct cluster of cells (turnover unit) derived from a mutant stem cell, may be detected in a series of tissue samples, each containing as many as 5 × 104 turnover units. Additionally, rare inherited mutations may be scanned in pooled DNA samples, each derived from as many as 105 persons.  相似文献   

3.
Restriction landmark genomic scanning (RLGS) is a method to detect large numbers of restriction landmarks in a single experiment. It is based on the concept that restriction enzyme sites can serve as landmarks throughout a genome. RLGS uses direct end-labeling of the genomic DNA digested with a rare-cutting restriction enzyme and high-resolution two-dimensional electrophoresis. Compared with the conventional gene-detection technologies, such as Southern blot analysis and PCR, RLGS has the following advantages even though it needs specially designed instruments: high-efficiency scanning capacity, scanning extensibility by using alternate restriction enzyme combinations, applicability to any organism, a spot intensity that reflects the copy number of restriction landmarks, and the ability, by using a methylation-sensitive enzyme, to screen the methylated state of genomic DNA. The RLGS protocol can be accomplished in 5 days to 2 weeks.  相似文献   

4.
A protocol for the construction of microsatellite enriched genomic library   总被引:1,自引:0,他引:1  
An improved protocol for constructing microsatellite-enriched libraries was developed. The procedure depends on digesting genomic DNA with a restriction enzyme that generates blunt-ends, and on ligating linkers that, when dimerized, create a restriction site for a different blunt-end producing restriction enzyme. Efficient ligation of linkers to the genomic DNA fragments is achieved by including restriction enzymes in the ligation reaction that eliminate unwanted ligation products. After ligation, the reaction mixture is subjected to subtractive hybridization without purification. DNA fragments containing microsatellites are captured by biotin-labeled oligonucleotide repeats and recovered using streptavidin-coated beads. The recovered fragments are amplified by PCR using the linker sequence as primer, and cloned directly into a plasmid vector. The linker has the sequence GTTT on the 5′ end, which promotes efficient adenylation of the 3′ ends of the PCR products. Consequently, the amplified fragments could be cloned into vectors without purification. This procedure enables efficient enrichment and cloning of microsatellite sequences, resulting in a library with a low level of redundancy.  相似文献   

5.
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA–GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using ϕ29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3′- and 5′- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.  相似文献   

6.
Agrobacterium transfer DNA (T-DNA) is an effective plant mutagen that has been used to create sequence-indexed T-DNA insertion lines in Arabidopsis thaliana as a tool to study gene function. Creating T-DNA insertion lines requires a dependable method for locating the site of insertion in the genome. In this protocol, we describe an adapter ligation-mediated PCR method that we have used to screen a mutant library and identify over 150,000 T-DNA insertional mutants; the method can also be applied to map individual mutants. The procedure consists of three steps: a restriction enzyme-mediated ligation of an adapter to the genomic DNA; a PCR amplification of the T-DNA/genomic DNA junction with primers specific to the adapter and T-DNA; and sequencing of the T-DNA/genomic junction to enable mapping to the reference genome. In most cases, the sequenced genomic region extends to the T-DNA border, enabling the exact location of the insert to be identified. The entire process takes 2 weeks to complete.  相似文献   

7.
In the finishing phase of the Chromobacterium violaceum genome project, the shotgun sequences were assembled into 57 contigs that were then organized into 19 scaffolds, using the information from shotgun and cosmid clones. Among the 38 ends resulting from the 19 scaffolds, 10 ended with sequences corresponding to rRNA genes (seven ended with the 5S rRNA gene and three ended with the 16S rRNA gene). The 28 non-ribosomal ends were extended using the PCR-assisted contig extension (PACE) methodology, which immediately closed 15 real gaps. We then applied PACE to the 16S rRNA gene containing ends, resulting in eight different sequences that were correctly assembled within the C. violaceum genome by combinatory PCR strategy, with primers derived from the non-repetitive genomic region flanking the 16S and 5S rRNA gene. An oriented combinatory PCR was used to correctly position the two versions (copy A and copy B, which differ by the presence or absence of a 100-bp insert); it revealed six copies corresponding to copy A, and two to copy B. We estimate that the use of PACE, followed by combinatory PCR, accelerated the finishing phase of the C. violaceum genome project by at least 40%.  相似文献   

8.
A novel method for the directional cloning of native PCR products was developed. Abasic sites in DNA templates make DNA polymerases stall at the site during synthesis of the complementary strand. Since the 5′ ends of PCR product strands contain built-in amplification primers, abasic sites within the primers result in the formation of 5′ single-stranded overhangs at the ends of the PCR product, enabling its direct ligation to a suitably cleaved cloning vector without any further modification. This “autosticky PCR” (AS-PCR) overcomes the problems caused by end sensitivity of restriction enzymes, or internal restriction sites within the amplified sequences, and enables the generation of essentially any desired 5′ overhang.  相似文献   

9.
Targeted gene disruption is a powerful tool for studying gene function in cells and animals. In addition, this technology includes a potential to correct disease-causing mutations. However, constructing targeting vectors is a laborious step in the gene-targeting strategy, even apart from the low efficiency of homologous recombination in mammals. Here, we introduce a quick and simplified method to construct targeting vectors. This method is based on the commercially available MultiSite Gateway technology. The sole critical step is to design primers to PCR amplify genomic fragments for homologous DNA arms, after which neither ligation reaction nor extensive restriction mapping is necessary at all. The method therefore is readily applicable to embryonic stem (ES) cell studies as well as all organisms whose genome has been sequenced. Recently, we and others have shown that the human pre-B cell line Nalm-6 allows for high-efficiency gene targeting. The combination of the simplified vector construction system and the high-efficiency gene targeting in the Nalm-6 cell line has enabled rapid disruption of virtually any locus of the human genome within one month, and homozygous knockout clones lacking a human gene of interest can be created within 2-3 months. Thus, our system greatly facilitates reverse genetic studies of mammalian--particularly human--genes.  相似文献   

10.
利用Red重组系统快速构建基因打靶载体   总被引:1,自引:0,他引:1  
基因敲除小鼠模型是在哺乳动物体内研究基因功能最可靠的方法之一。利用常规的分子克隆的方法构建基因打靶载体往往工作周期长,对于难度特别大的基因有时甚至无法完成打靶载体的构建。通过合理应用Red重组系统和低拷贝中间载体,利用50bp的同源重组序列直接从BAC载体中克隆了长片段的小鼠基因组序列;将得到的基因组序列再次通过重组和改造,构建了Gpr56等基因的完全敲除并带有报告基因的打靶载体,实现了打靶载体的快速构建。  相似文献   

11.
Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls.  相似文献   

12.
The properties and characteristics of oligonucleotide adaptors for use in a simplified procedure for the construction of cDNA and genomic DNA libraries are described. The adaptors are suitable for joining to blunt ended cDNA or sheared genomic DNA, and then to the cohesive ends of restriction sites in vectors. Each adaptor consists of two oligonucleotides with complementary but nonpalindromic sequences that include an internal restriction site, a 5' phosphorylated blunt end, and an overlapping or staggered 5' hydroxylated end corresponding to a restriction endonuclease site in a vector of choice. Ligation of the blunt end to high molecular weight target DNA proceeds efficiently and there is no tandem concatenation of the adaptor. Insertion into the appropriate vector only requires ligation of the cohesive ends. There is no requirement for methylation, restriction enzyme cleavage, G-C tailing, or denaturation after ligation of the adaptor to the target DNA, all characteristics of other procedures.  相似文献   

13.
A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments.  相似文献   

14.
A Masny  A Plucienniczak 《BioTechniques》2001,31(4):930-4, 936
A method for generating limited representations of total bacterial DNA, without prior knowledge of the DNA sequence, has been developed. This method consists of three steps: digestion with two restriction enzymes, ligation of two oligonucleotide adapters corresponding to the restriction sites, and selective PCR amplification of the ligation products. The method relies on the use of two restriction enzymes with considerable differences in cleavage frequency of the investigated DNA and the ligation of two different oligonucleotides, each corresponding to one of the two cohesive ends of DNA fragments. Three subsets of DNA fragments are generated during digestion and subsequent ligation: terminated with the same oligonucleotide on both 5' ends of DNA fragments (two subsets) and terminated with two different oligonucleotides. Suppression PCR allows only the third subset of DNA fragments to be amplified exponentially. The method allows bacterial species strain differentiation on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light.  相似文献   

15.
Paramecium internal eliminated sequences (IESs) are short AT-rich DNA elements that are precisely eliminated from the germ line genome during development of the somatic macronucleus. They are flanked by one 5'-TA-3' dinucleotide on each side, a single copy of which remains at the donor site after excision. The timing of their excision was examined in synchronized conjugating cells by quantitative PCR. Significant amplification of the germ line genome was observed prior to IES excision, which starts 12 to 14 h after initiation of conjugation and extends over a 2- to 4-h period. Following excision, two IESs were shown to form extrachromosomal circles that can be readily detected on Southern blots of genomic DNA from cells undergoing macronuclear development. On these circular molecules, covalently joined IES ends are separated by one copy of the flanking 5'-TA-3' repeat. The similar structures of the junctions formed on the excised and donor molecules point to a central role for this dinucleotide in IES excision.  相似文献   

16.
A novel method for the directional cloning of native PCR products was developed. Abasic sites in DNA templates make DNA polymerases stall at the site during synthesis of the complementary strand. Since the 5′ ends of PCR product strands contain built-in amplification primers, abasic sites within the primers result in the formation of 5′ single-stranded overhangs at the ends of the PCR product, enabling its direct ligation to a suitably cleaved cloning vector without any further modification. This “autosticky PCR” (AS-PCR) overcomes the problems caused by end sensitivity of restriction enzymes, or internal restriction sites within the amplified sequences, and enables the generation of essentially any desired 5′ overhang. Received: 11 August 1998 / Accepted: 2 October 1998  相似文献   

17.
Lowden MR  Meier B  Lee TW  Hall J  Ahmed S 《Genetics》2008,180(2):741-754
Critically shortened telomeres can be subjected to DNA repair events that generate end-to-end chromosome fusions. The resulting dicentric chromosomes can enter breakage–fusion–bridge cycles, thereby impeding elucidation of the structures of the initial fusion events and a mechanistic understanding of their genesis. Current models for the molecular basis of fusion of critically shortened, uncapped telomeres rely on PCR assays that typically capture fusion breakpoints created by direct ligation of chromosome ends. Here we use independent approaches that rely on distinctive features of Caenorhabditis elegans to study the frequency of direct end-to-end chromosome fusion in telomerase mutants: (1) holocentric chromosomes that allow for genetic isolation of stable end-to-end fusions and (2) unique subtelomeric sequences that allow for thorough PCR analysis of samples of genomic DNA harboring multiple end-to-end fusions. Surprisingly, only a minority of end-to-end fusion events resulted from direct end joining with no additional genome rearrangements. We also demonstrate that deficiency for the C. elegans Ku DNA repair heterodimer does not affect telomere length or cause synthetic effects in the absence of telomerase.  相似文献   

18.
IRAP and REMAP for retrotransposon-based genotyping and fingerprinting   总被引:1,自引:0,他引:1  
Retrotransposons can be used as markers because their integration creates new joints between genomic DNA and their conserved ends. To detect polymorphisms for retrotransposon insertion, marker systems generally rely on PCR amplification between these ends and some component of flanking genomic DNA. We have developed two methods, retrotransposon-microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon amplified polymorphism (IRAP) analysis, that require neither restriction enzyme digestion nor ligation to generate the marker bands. The IRAP products are generated from two nearby retrotransposons using outward-facing primers. In REMAP, amplification between retrotransposons proximal to simple sequence repeats (microsatellites) produces the marker bands. Here, we describe protocols for the IRAP and REMAP techniques, including methods for PCR amplification with a single primer or with two primers and for agarose gel electrophoresis of the product using optimal electrophoresis buffers and conditions. This protocol can be completed in 1-2 d.  相似文献   

19.
Using a cDNA probe specific for the bovine Type II procollagen, a series of overlapping genomic clones containing 45 kb of contiguous human DNA have been isolated. Sequencing of a 54 bp exon, number 29, provided direct evidence that the recombinant clones bear human Type II collagen sequences. Localization of the 5' and 3' ends of the gene indicated that the human Type II collagen gene is 30 kb in size. This value is significantly higher than that of the homologous avian gene. The segregation of a polymorphic restriction site in informative families conclusively demonstrated that the Type II gene is found in a single copy in the human haploid genome. Finally, sequencing of a triple helical domain exon has confirmed that a rearrangement leading to the fusion of two exons occurred in the pro alpha 1(I) gene, following the divergence of the fibrillar collagens.  相似文献   

20.
AFLP: a new technique for DNA fingerprinting.   总被引:192,自引:1,他引:192       下载免费PDF全文
A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号