首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foot-and-mouth disease virus (FMDV) induces a very rapid inhibition of host cell protein synthesis within infected cells. This is accompanied by the cleavage of the eukaryotic translation initiation factor 4GI (eIF4GI). The cleavage of the related protein eIF4GII has now been analyzed. Within FMDV-infected cells, cleavage of eIF4GI and eIF4GII occurs with similar kinetics. Cleavage of eIF4GII is induced in cells and in cell extracts by the FMDV leader protease (L(pro)) alone, generating cleavage products similar to those induced by enterovirus and rhinovirus 2A protease (2A(pro)). By the use of a fusion protein containing residues 445 to 744 of human eIF4GII, it was demonstrated that the FMDV L(pro) specifically cleaves this protein between residues G700 and S701, immediately adjacent to the site (V699/G700) cleaved by rhinovirus 2A(pro) in vitro. The G700/S701 cleavage site does not correspond, by amino acid sequence alignment, to that cleaved in eIF4GI by the FMDV L(pro) in vitro. Knowledge of the cleavage sites and the three-dimensional structures of the FMDV L(pro) and rhinovirus 2A(pro) enabled mutant forms of the eIF4GII sequence to be generated that are differentially resistant to either one of these proteases. These results confirmed the specificity of each protease and showed that the mutant forms of the fusion protein substrate retained their correct sensitivity to other proteases.  相似文献   

2.
The leader proteinase (L(pro)) of foot and mouth disease virus is a papain-like cysteine proteinase. After processing itself from the polyprotein, L(pro) then cleaves the host protein eukaryotic initiation factor (eIf) 4GI, thus preventing protein synthesis from capped mRNA in the infected cell. We have investigated L(pro) interaction with eIF4GI and its isoform, eIF4GII. L(pro), expressed as a catalytically inactive fusion protein with glutathione S-transferase, binds specifically to eIF4G isomers in rabbit reticulocyte lysates. Deletion and specific mutagenesis were used to map the binding domain on L(pro) to residues 183-195 of the C-terminal extension and to residue Cys(133). These residues of the C-terminal extension and Cys(133) are adjacent in the crystal structure but lie about 25 A from the active site. The region on eIF4GI recognized by the L(pro) C-terminal extension was mapped to residues 640-669 using eIF4GI fragments generated by proteolysis or by in vitro translation. The L(pro) cleavage site at Gly(674) downward arrow Arg(675) was not necessary for binding. Similar experiments with human rhinovirus 2A proteinase (2A(pro)), a chymotrypsin-like cysteine proteinase that also cleaves eIF4G isoforms, revealed that 2A(pro) can also bind to eIF4GI fragments lacking its cleavage site. These experiments strongly suggest a novel interaction between picornaviral proteinases and eIF4G isoforms.  相似文献   

3.
Kempf BJ  Barton DJ 《Journal of virology》2008,82(12):5847-5859
Poliovirus (PV) 2A protease (2A(Pro)) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5' cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2A(Pro) activity was required for viral polysome formation and stability. 2A(Pro) cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2A(Cys109Ser) (2A(Pro) with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2A(Cys109Ser)-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3C(Pro) activity was not required for viral polysome formation or stability. 2A(Pro)-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5' terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.  相似文献   

4.
Foeger N  Kuehnel E  Cencic R  Skern T 《The FEBS journal》2005,272(10):2602-2611
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) initially cleaves itself from the polyprotein. Subsequently, L(pro) cleaves the host proteins eukaryotic initiation factor (eIF) 4GI and 4GII. This prevents protein synthesis from capped cellular mRNAs; the viral RNA is still translated, initiating from an internal ribosome entry site. L(pro) cleaves eIF4GI between residues G674 and R675. We showed previously, however, that L(pro) binds to residues 640-669 of eIF4GI. Binding was substantially improved when the eIF4GI fragment contained the eIF4E binding site and eIF4E was present in the binding assay. L(pro) interacts with eIF4GI via residue C133 and residues 183-195 of the C-terminal extension. This binding domain lies about 25 A from the active site. Here, we examined the binding of L(pro) to eIF4GI fragments generated by in vitro translation to narrow the binding site down to residues 645-657 of human eIF4GI. Comparison of these amino acids with those in human eIF4GII as well as with sequences of eIF4GI from other organisms allowed us to identify two conserved basic residues (K646 and R650). Mutation of these residues was severely detrimental to L(pro) binding. Similarly, comparison of the sequence between residues 183 and 195 of L(pro) with those of other FMDV serotypes and equine rhinitis A virus showed that acidic residues D184 and E186 were highly conserved. Substitution of these residues in L(pro) significantly reduced eIF4GI binding and cleavage without affecting self-processing. Thus, FMDV L(pro) has evolved a domain that specifically recognizes a host cell protein.  相似文献   

5.
The 2A proteinase (2A(pro)) of human rhinoviruses (HRVs) is a cysteine protease containing a structurally important zinc ion. In the viral polyprotein, the enzyme cleaves between the C terminus of VP1 and its own N terminus. 2A(pro) also processes the two isoforms of the cellular protein, eukaryotic initiation factor 4G (eIF4G). We have shown that mature HRV2 2A(pro), when translated in vitro in rabbit reticulocyte lysates, efficiently cleaves eIF4GI, although the enzyme was not immediately active upon synthesis. Here, we examine the relationship between self-processing and eIF4GI cleavage. The onset of both reactions first occurred at least 10 min after initiation of protein synthesis. Furthermore, when self-processing was prevented by a specific mutation between VP1 and 2A(pro), the VP1-2A(pro) precursor was essentially unable to cleave eIF4GI, implying that self-processing is a prerequisite for eIF4GI cleavage. 2A(pro) synthesized in the presence of a potent zinc chelator is inactive; however, upon addition of excess zinc, HRV2 2A(pro) rapidly gained activity. Finally, the presence of the zinc chelator in the culture medium can protect HeLa cells from HRV infection.  相似文献   

6.
Sousa C  Schmid EM  Skern T 《FEBS letters》2006,580(24):5713-5717
The 2A proteinase (2A(pro)) of human rhinoviruses (HRVs) initiates proteolytic processing by cleaving between the C-terminus of VP1 and its own N-terminus. It subsequently cleaves the host protein eIF4GI. HRV2 and HRV14 2A(pro) cleave at IITTA *GPSD and DIKSY *GLGP on their respective polyproteins. The HRV2 2A(pro) cleavage site on eIF4GI is TLSTR *GPPR. We show that HRV2 2A(pro) can self-process at the eIF4GI cleavage sequence whereas HRV14 2A(pro) cannot, due to the presence of the arginine residue at P1. The mutations A104C or A104S in HRV14 2A(pro) restored cleavage when arginine was present at P1, although not to wild-type levels. These experiments define residues which determine substrate recognition in rhinoviral 2A(pro).  相似文献   

7.
We have recently reported that HIV-1 protease (PR) cleaves the initiation factor of translation eIF4GI [Ventoso et al., Proc. Natl. Acad. Sci. USA 98 (2001) 12966-12971]. Here, we analyze the proteolytic activity of HIV-1 PR on eIF4GI and eIF4GII and its implications for the translation of mRNAs. HIV-1 PR efficiently cleaves eIF4GI, but not eIF4GII, in cell-free systems as well as in transfected mammalian cells. This specific proteolytic activity of the retroviral protease on eIF4GI was more selective than that observed with poliovirus 2A(pro). Despite the presence of an intact endogenous eIF4GII, cleavage of eIF4GI by HIV-1 PR was sufficient to impair drastically the translation of capped and uncapped mRNAs. In contrast, poliovirus IRES-driven translation was unaffected or even enhanced by HIV-1 PR after cleavage of eIF4GI. Further support for these in vitro results has been provided by the expression of HIV-1 PR in COS cells from a Gag-PR precursor. Our present findings suggest that eIF4GI intactness is necessary to maintain cap-dependent translation, not only in cell-free systems but also in mammalian cells.  相似文献   

8.
The poliovirus (PV)-induced cytopathic effect (CPE) was blocked in neural cells but not in HeLa cells by the addition of monoclonal antibody (MAb) against PV or the human PV receptor (CD155) 2 h postinfection (hpi). Since each MAb has the ability to block viral infection, no CPE in PV-infected neural cells appeared to result from the blockade of multiple rounds of viral replication. Pulse-labeling experiments revealed that virus-specific protein synthesis proceeded 5 hpi with or without MAbs. However, in contrast to the results obtained without MAbs, virus-specific protein synthesis with MAbs was not detected 7 hpi. Shutoff of host translation was also not observed in the presence of MAbs. Western blot analysis showed that 2Apro, the viral protein which mediates the cleavage of eukaryotic translation initiation factor eIF4G, was still present 11 hpi. However, intact eIF4G appeared 11 hpi. An immunocytochemical study indicated that 2Apro was detected only in the nucleus 11 hpi. These results suggest that neural cells possess protective response mechanisms against PV infection as follows: (i) upon PV infection, neural cells produce a factor(s) to suppress PV internal ribosome entry site activity by 7 hpi, (ii) a factor which supports cap-dependent translation for eIF4G may exist in infected cells when no intact eIF4G is detected, and (iii) the remaining 2Apro is not effective in cleaving eIF4G because it is imported into the nucleus by 11 hpi.  相似文献   

9.
Morley SJ  Pain VM 《FEBS letters》2001,503(2-3):206-212
Previously, we have shown that translation eukaryotic initiation factor (eIF) 4GI is cleaved during anti-Fas-mediated apoptosis. Here, we have investigated the effects of the proteasome inhibitors, MG132 and lactacystin, and the immunosuppressants, 2-amino-2[2-(4-octylphenyl)ethyl]-1,3,propane diol (FTY720) and cyclosporin A, on the integrity of eIF4GI and eIF4GII in T cells. Using wild-type Jurkat T cells, we show that the proteasome inhibitors MG132 and lactacystin promote the cleavage of eIF4G, activate caspase-8 and caspase-3-like activities and decrease cell viability. Furthermore, MG132 also promotes the cleavage of eIF4G and the activation of caspase-3-like activity in a caspase-8-deficient Jurkat cell line which is resistant to anti-Fas-mediated apoptosis. Using specific anti-peptide antisera, we show that both eIF4GI and eIF4GII are cleaved in either cell line in response to MG132 and lactacystin. In response to such treatments, we demonstrate that the fragments of eIF4GI generated include those previously observed with anti-Fas antiserum together with a novel product which lacks the ability to interact with eIF4E. In contrast, cells treated with the immunosuppressants FTY720 and cyclosporin A appear to contain only the novel cleavage fragment of eIF4GI and to lack those characteristic of cells treated with anti-Fas antiserum. These data suggest that caspase-8 activation is not required for apoptosis and eIF4G cleavage mediated by proteasome inhibitors and immunosuppressants in human T cells.  相似文献   

10.
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5′-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2Apro) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2Apro variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2Apro or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2Apro. These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.  相似文献   

11.
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.  相似文献   

12.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

13.
The replication of many viruses is absolutely dependent on proteolytic cleavage. Infected cells also use this biological mechanism to induce programmed cell death in response to viral infection. Specific inhibitors for both viral and cellular proteases are therefore of vital importance. We have recently shown that the general caspase inhibitor zVAD.fmk inhibits not only caspases, but also the 2Apro of human rhinoviruses (HRVs) (L. Deszcz, J. Seipelt, E. Vassilieva, A. Roetzer, and E. Kuechler, FEBS Lett. 560:51-55, 2004). Here, we describe a derivative of zVAD.fmk that inhibits HRV2 2Apro but that has no effect on caspase 9. This gain in specificity was achieved by replacing the aspartic acid of zVAD.fmk with methionine to generate zVAM.fmk. Methionine was chosen because an oligopeptide with methionine at the P1 position was a much better substrate than an oligopeptide with an alanine residue, which is found at the P1 position of the wild-type HRV2 2Apro cleavage site. zVAM.fmk inhibits the replication of HRV type 2 (HRV2), HRV14, and HRV16. In contrast to zVAD.fmk, however, zVAM.fmk did not inhibit apoptosis induced by puromycin in HeLa cells. zVAM.fmk inhibited in vitro the intermolecular cleavage of eukaryotic initiation factor 4GI (eIF4GI) by HRV2 2Apro at nanomolar concentrations. However, much higher concentrations of zVAM.fmk were required to inhibit HRV14 2Apro cleavage of eIF4GI. In contrast, intramolecular self-processing of HRV14 2Apro was much more susceptible to inhibition by zVAM.fmk than that of HRV2 2Apro, suggesting that zVAM.fmk inhibits HRV2 and HRV14 replication by targeting different reactions of the same proteinase.  相似文献   

14.
Several picornaviruses shut down host cellular protein synthesis by proteolytic cleavage of the eukaryotic initiation factor (eIF) 4GI and eIF4GII isoforms. Viral RNA translation is maintained by a cap-independent mechanism. Here, we identify the human rhinovirus 2 2A(pro) cleavage site in eIF4GII in vitro as PLLNV(699)*GSR; this sequence lies seven amino acids C-terminal to the cleavage site previously identified in eIF4GI (LSTR681*GPP).  相似文献   

15.
The 2A proteinases (2A(pro)) from the picornavirus family are multifunctional cysteine proteinases that perform essential roles during viral replication, involving viral polyprotein self-processing and shutting down host cell protein synthesis through cleavage of the eukaryotic initiation factor 4G (eIF4G) proteins. Coxsackievirus B4 (CVB4) 2A(pro) also cleaves heart muscle dystrophin, leading to cytoskeletal dysfunction and the symptoms of human acquired dilated cardiomyopathy. We have determined the solution structure of CVB4 2A(pro) (extending in an N-terminal direction to include the C-terminal eight residues of CVB4 VP1, which completes the VP1-2A(pro) substrate region). In terms of overall fold, it is similar to the crystal structure of the mature human rhinovirus serotype 2 (HRV2) 2A(pro), but the relatively low level (40%) of sequence identity leads to a substantially different surface. We show that differences in the cI-to-eI2 loop between HRV2 and CVB4 2A(pro) translate to differences in the mechanism of eIF4GI recognition. Additionally, the nuclear magnetic resonance relaxation properties of CVB4 2A(pro), particularly of residues G1 to S7, F64 to S67, and P107 to G111, reveal that the substrate region is exchanging in and out of a conformation in which it occupies the active site with association and dissociation rates in the range of 100 to 1,000 s(-1). This exchange influences the conformation of the active site and points to a mechanism for how self-processing can occur efficiently while product inhibition is avoided.  相似文献   

16.
Kuehnel E  Cencic R  Foeger N  Skern T 《Biochemistry》2004,43(36):11482-11490
The foot-and-mouth disease virus Leader proteinase (L(pro)) frees itself from the growing viral polyprotein by self-processing between its own C-terminus and the N-terminus of the subsequent protein VP4. The ArgLysLeuLys*GlyAlaGlyGln sequence is recognized. The proteinase subsequently cleaves the two isoforms of host cell protein eukaryotic initiation factor (eIF) 4G at the AlaAsnLeuGly*ArgThrThrLeu (eIF4GI) and LeuAsnValGly*SerArgArgSer (eIF4GII) sequences. The enzyme does not, however, recognize the sequence on eIF4GII (AlaAspPheGly*ArgGlnThrPro) which is analogous to that recognized on eIF4GI. To investigate the basis for this specificity, we used site-directed mutagenesis to show that the presence of Phe at the P2 position or Asp at the P3 position severely compromises self-processing. Furthermore, these substitutions also give rise to the production of aberrant cleavage products. As Leu is the preferred amino acid at P2, the specificity of L(pro) is reminiscent of that of cathepsin K. This cellular proteinase can also process collagen through its ability to accept proline at the P2 position. Investigation of the L(pro) substrate specificity showed, however, that in contrast to cathepsin K, L(pro) cannot accept Pro at P2 and does not cleave collagen. Subtle variations in the arrangement of the S2 binding pockets on the enzymes are responsible for these differences in specificity.  相似文献   

17.
The 2A proteinase (2Apro) of human rhinovirus 2 is a cysteine proteinase with a unique chymotrypsin-like fold. During viral replication, 2Apro performs self-processing by cleaving between its own N terminus and the C terminus of the preceding protein, VP1. Subsequently, 2Apro cleaves the two isoforms of the cellular protein, eukaryotic initiation factor (eIF) 4G. We have previously shown that HRV2 2Apro can directly bind to eIF4G isoforms. Here we demonstrate using deletion mutants of eIF4GI that HRV2 2Apro requires eIF4GI amino acids 600-674 for binding; however, the amino acids at the cleavage site, Arg681 downward arrow Gly, are not required. The HRV2 2Apro binding domain for eIF4GI was identified by site-directed mutagenesis. Specifically, mutations Leu17 --> Arg and Asp35 --> Glu severely impaired HRV2 2Apro binding and thus processing of eIF4GI in rabbit reticulocyte lysates; self-processing, however, was not affected. Alanine scanning analysis further identified the loop containing residues Tyr32, Ser33, and Ser34 as important for eIF4GI binding. Although Asp35 is part of the catalytic triad, most of the eIF4GI binding domain lies in a unique exosite structure absent from other chymotrypsin-like enzymes and is distinct from the substrate binding cleft. The exosite represents a novel virulence determinant that may allow the development of specific inhibitors for HRV2 2Apro.  相似文献   

18.
Poliovirus 2A protease induces apoptotic cell death   总被引:12,自引:0,他引:12       下载免费PDF全文
A cell line was generated that expresses the poliovirus 2A protease in an inducible manner. Tightly controlled expression was achieved by utilizing the muristerone A-regulated expression system. Upon induction, cleavage of the eukaryotic translation initiation factor 4GI (eIF4GI) and eIF4GII is observed, with the latter being cleaved in a somewhat slower kinetics. eIF4G cleavage was accompanied by a severe inhibition of protein synthesis activity. Upon induction of the poliovirus 2A protease, the cells displayed fragmented nuclei, chromatin condensation, oligonucleosome-size DNA ladder, and positive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining; hence, their death can be characterized as apoptosis. These results indicate that the expression of the 2A protease in mammalian cells is sufficient to induce apoptosis. We suggest that the poliovirus 2A protease induces apoptosis either by arresting cap-dependent translation of some cellular mRNAs that encode proteins required for cell viability, by preferential cap-independent translation of cellular mRNAs encoding apoptosis inducing proteins, or by cleaving other, yet unidentified cellular target proteins.  相似文献   

19.
The initiation factor eIF4G plays a central role in the regulation of translation. In picornaviruses, as well as in human immunodeficiency virus type 1 (HIV-1), cleavage of eIF4G by the viral protease leads to inhibition of protein synthesis directed by capped cellular mRNAs. In the present work, cleavage of both eIF4GI and eIF4GII has been analyzed by employing the proteases encoded within the genomes of several members of the family Retroviridae, e.g., Moloney murine leukemia virus (MoMLV), mouse mammary tumor virus, human T-cell leukemia virus type 1, HIV-2, and simian immunodeficiency virus. All of the retroviral proteases examined were able to cleave the initiation factor eIF4GI both in intact cells and in cell-free systems, albeit with different efficiencies. The eIF4GI hydrolysis patterns obtained with HIV-1 and HIV-2 proteases were very similar to each other but rather different from those obtained with MoMLV protease. Both eIF4GI and eIF4GII were cleaved very efficiently by the MoMLV protease. However, eIF4GII was a poor substrate for HIV proteases. Proteolytic cleavage of eIF4G led to a profound inhibition of cap-dependent translation, while protein synthesis driven by mRNAs containing internal ribosome entry site elements remained unaffected or was even stimulated in transfected cells.  相似文献   

20.
Coxsackievirus B1 (CVB1) 2A proteinase (2A(pro)) is a cysteine proteinase that cleaves the viral monocistronic polyprotein between the C-terminus of the VP1 region and the N-terminus of the 2A region, and also shuts off translational initiation in host cells by cleavage of eukaryotic initiation factor 4G (eIF4G) isoforms. We expressed in Escherichia coli a series of fusions in which various C-terminal fragments of VP1 were linked to the N-terminus of 2A(pro), and we also employed site-directed mutagenesis to introduce mutations of several amino acid residues. Our results showed that the presence of the C-terminal three amino acid residues of VP1 at the N-terminus of 2A(pro) is sufficient for specific self-cleavage between VP1 and 2A(pro) to generate mature 2A(pro), but the P4 amino acid also plays an important role. We further found that 2A(pro) cleaves the amino acid sequence Leu-Val-Pro-Arg-( *)Gly-Ser (LVPRGS motif), which is the target sequence of thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号