首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat kidney gamma-glutamyl transpeptidase is composed of two nonidentical glycosylated subunits. The enzyme is localized on the lumenal surface of the brush-border membranes of proximal tubule epithelial cells; it is attached to the membranes via an NH2-terminal segment of the larger of the two subunits. Tissue-labeling experiments followed by immunoprecipitation with antibodies directed against the enzyme and its two subunits demonstrate that a glycosylated single chain precursor (Mr = 78,000), containing the elements of both the subunits, is initially synthesized. Pulse-chase studies in the presence of pactamycin, and inhibitor of protein synthesis initiation, indicate that the larger of the two subunits is located at the NH2 terminus of the Mr = 78,000 precursor. The initial events in the biosynthesis and processing of gamma-glutamyl transpeptidase were investigated by in vitro translation of rat kidney mRNA. Such translation results in the synthesis of a Mr = 63,000 unglycosylated polypeptide which has been shown immunologically to contain the domains for both subunits. The Mr = 63,000 species is processed to a Mr = 78,000 core-glycosylated polypeptide when translation of mRNA is carried out in the presence of dog pancreas microsomes. This processing does not appear to be associated with cleavage of an NH2-terminal leader sequence. The Mr = 78,000 polypeptide is integrated into the microsomal membranes with an orientation that is analogous to that found on the brush-border membranes. Glycosylation and membrane integration of transpeptidase are cotranslational events. Upon longer incubation, the Mr = 78,000 species sequestered within the microsomal vesicles is cleaved to species corresponding in size to the two subunits of the kidney enzyme.  相似文献   

2.
gamma-Glutamyltranspeptidase is associated with the brush border membrane of kidney proximal straight tubule cells. It can be solubilized qualitatively by treatment with papain or Triton X-100. Neither procedure affects its catalytic activity but the two resulting forms of the enzyme differ considerably in their physical properties. The papain-solubilized transpeptidase is soluble in aqueous buffers and was purified 430-fold. It has an s20,w of 4.9 S, a Stokes radius of 36 A, and a calculated molecular weight of 69,000. It appears homogeneous by sedimentation equilibrium centrifugation (Mr=66,700). In contrast, the Triton-solubilized transpeptidase is soluble only in the presence of detergents and was purifed 300-fold. This form of the enzyme has a Stokes radius of 70 A but an s20,w of only 4.15 S. Aggregation of the enzyme just below the critical micelle concentration of Triton X-100 and its ability to bind 1.16 mg of Triton X-100-protein complex was calculated to be 169,000, but the glycoprotein portion of the complex is 52% of the total mass (87,000). The mass of Triton X-100 (82,000) is consistent with its reported micelle molecular weight. Treatment of the Triton-purified transpeptidase with papain or bromelain results in a form of the enzyme identical in all respects with the papain-purified enzyme. Both the Triton- and papain-purified transpeptidase exhibit two protein bands on sodium lauryl sulfate-polyacrylamide gel electrophoresis. The smaller subunits of the two forms appear identical (Mr=27,000), while the larger subunits of the Triton- and papain-purified enzyme have apparent molecular weights of 54,000 and 51,000, respectively. These data suggest that a peptide (3,000 to 19,000) in the larger subunit of gamma-glutamyltranspeptidase is responsible for its binding to Triton micelles and probably for holding the enzyme in the brush border membrane.  相似文献   

3.
Basement membrane (type IV) collagen is a heteropolymer   总被引:10,自引:0,他引:10  
Type IV collagen was isolated in high yield from bovine kidney cortex. The protein revealed Mr = 380,000 and contained, in a 2:1 ratio, two different disulfide-linked polypeptide chains, C-1 and D-1 (Mr = 125,000). Carboxymethyl-cellulose chromatography before and after reduction proved that the two polypeptide chains are arranged in a single triple helical molecule with the chain composition (C-1)2(D-1). The disulfide bridges appear to be located 180 amino acid residues from the NH2 terminus of the chains.  相似文献   

4.
Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Dopamine beta-hydroxylase was present as 2 subunit forms (apparent Mr = 77,000 and 73,000) in the PC12 pheochromocytoma cell line as detected by immunoprecipitation from [35S]methionine-labeled cultures, and analyzed by sodium dodecyl sulfate gel electrophoresis and fluorography. The Mr = 77,000 form was present in a crude membrane fraction, while the Mr = 73,000 form was soluble. Both forms appeared to be present in approximately equal amounts, and both were glycosylated. Treatment of PC12 cells with tunicamycin, a potent inhibitor of core glycosylation in the endoplasmic reticulum, completely inhibited the appearance of the Mr = 77,000 and Mr = 73,000 forms, and 2 new immunoreactive polypeptides were obtained (apparent Mr = 67,000 and 63,000). Pulse-chase experiments suggested that the Mr = 77,000 form is initially synthesized (by 5 min) and a portion is converted in 15-90 min to the Mr = 73,000 form. Thereafter, the ratio between forms remains relatively constant, at least for several hours. Translation of mRNA from bovine and rat adrenals, and immunoprecipitation, indicated that dopamine beta-hydroxylase is initially synthesized as a single polypeptide (apparent Mr = 67,000). The subcellular site of biosynthesis of dopamine beta-hydroxylase was determined by isolation of mRNA from free and membrane-bound polysomes from bovine adrenal medulla. Translation in a cell free system and immunoprecipitation localized the synthesis of dopamine beta-hydroxylase on membrane-bound polysomes. These experiments suggest that both soluble and membrane-bound forms of dopamine beta-hydroxylase are synthesized and core glycosylated in the endoplasmic reticulum, and that there probably is a precursor-product relationship between the Mr = 77,000 and the Mr = 73,000 subunit forms of dopamine beta-hydroxylase.  相似文献   

6.
Mammalian gamma-glutamyl transpeptidases characterized thus far have been shown to be heterodimeric glycoproteins. The two subunits are derived from a single-chain propeptide which, in the rat kidney, exhibits low transpeptidase activity (less than 2% of the dimeric enzyme). A human hepatoma-derived cell line, Hep G2, expresses relatively high transpeptidase activity. The enzyme is primarily localized on the cell surface and exhibits catalytic properties similar to the dimeric human kidney and lymphoid cell transpeptidase. Significantly, the Hep G2 enzyme, unlike the enzyme from other human tissues, is a single-chain species, Mr = 120,000.  相似文献   

7.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

8.
Expression of platelet glycoprotein Ib alpha in HEL cells   总被引:8,自引:0,他引:8  
We have previously shown that platelet glycoprotein Ib is expressed in a minority of cells of the human leukemic cell line HEL (Tabilio, A., Rosa, J. P., Testa, U., Kieffer, N., Nurden, A. T., Del Canizo, M. C., Breton-Gorius, J., and Vainchenker, W. (1984) EMBO J. 3, 453-459). In this report, we have selected a stable HEL subclone with increased expression of glycoprotein (GP) Ib as assessed by 6 different monoclonal antibodies in order to investigate the biochemical characteristics of this glycoprotein. A single polypeptide chain of apparent Mr = 60,000 was precipitated under reducing and nonreducing conditions by a specific polyclonal anti-platelet glycocalicin antibody and two anti-GPIb alpha monoclonal antibodies (AN51 and AP1), both from surface-labeled and metabolically labeled HEL cells. We were unable to demonstrate the presence of a polypeptide corresponding to the beta subunit of GPIb or GPIX which is closely associated with GPIb. Competitive immunoprecipitation performed in the presence of an excess amount of cold platelet glycocalicin completely displaced the Mr = 60,000 polypeptide. Synthesis of N-linked oligosaccharide chains on this Mr = 60,000 polypeptide was inhibited by the antibiotic tunicamycin, and a shift of the apparent Mr from 60,000 to 48,000 was observed. O-Linked oligosaccharide chains identical to platelet GPIb hexasaccharides were deficient or incomplete since no peanut agglutinin binding to the Mr = 60,000 polypeptide was observed after neuraminidase treatment of HEL cells. Thus, our results provide evidence that the Mr = 60,000 polypeptide expressed on the surface membrane of HEL cells is closely related to platelet GPIb and corresponds to an incompletely or abnormally O-glycosylated GPIb alpha subunit.  相似文献   

9.
Gamma-Glutamyl transpeptidase was isolated from sheep kidney cortex as an apparently homogeneous, highly active protein. At optimal pH and in the absence of acceptors, the enzyme catalyzes the release of about 510 mumol of p-nitroaniline per mg protein per min from the model substrate L-gamma-glutamyl-p-nitroanilide. Polyacrylamide gel electrophoresis in a sodium dodecylsulfate buffer system showed the presence of a large (Mr approximately 65000) and a small (Mr approximately 27000) polypeptide chain. Dissociation into two polypeptide chains was also achieved in 8 M urea. Amidination with dimethylsuberimidate produced a crosslinked protein of molecular weight approximately 90000. In the course of this work a convenient procedure was developed for the determination of gamma-glutamyl transpeptidase activity using L[glycine-2-3H]glutathione as the substrate. In this procedure the release of cysteinyl-[2-3H]glycine from glutathione is followed, after separation of the radioactive di-peptide from unreacted glutathione on a small Dowex-1 acetate column. The reactions with gamma-glutamyl-p-nitroanilide and glutathione are both strongly activated by several metal ions (Ca2+, Mg2+, Na+ and K+) and by a number of amino acids and peptide acceptors. The products of the reaction with glutathione were identified as cysteinylglycine, gamma-glutamylglutathione and glutamate. The formation of these products is consistent with the function of gamma-glutamyl transpeptidase in both the gamma-glutamyl transfer reaction and in the hydrolysis of the gamma-glutamyl bond. The activating effect of metal ions in the reaction with glutathione was shown to be dependent on the acceleration of the transfer reaction; the rate of hydrolysis of the gamma-glutamyl bond remaining unchanged.  相似文献   

10.
In the preceding article, we described physicochemical and kinetic properties of parathyroid hormone (PTH) receptors in clonal rat osteosarcoma cells (ROS 17/2.8) using photoaffinity ligand labeling and showed that the physiologically relevant receptor-ligand complex has an apparent Mr = 80,000. In this study, the photoaffinity labeled Mr = 80,000 receptor was localized exclusively on the cell surface plasma membrane and its glycoprotein nature was demonstrated through the use of lectin affinity-chromatography and specific exo- and endoglycosidases. Rinsing ROS cells, preincubated in the dark with 125I-labeled [Nle8, N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH) (4 h, 15 degrees C, equilibrium conditions) with acidic phosphate-buffered saline (pH 2.5, 30 s, 4 degrees C) before photolysis resulted in selective and nearly total disappearance of the labeled Mr = 80,000 receptor. PTH receptor integrity to acid rinsing and photolysis was shown by relabeling the Mr = 80,000 receptor after a second incubation of these cells with 125I-labeled NAP-NlePTH, followed by photolysis. Adsorption of Triton X-100-solubilized, 125I-labeled NAP-NlePTH receptors to wheat germ agglutinin-agarose is nearly complete and highly selective, and elution with N-acetylglucosamine resulted in virtually total recovery of the labeled receptors from the column. The wheat germ agglutinin-retarded PTH receptors show increased electrophoretic mobility upon treatment with neuraminidase which was inhibited by simultaneous addition of 2,3-dehydro-3-desoxy-N-acetylneuraminic acid, a specific neuraminidase inhibitor. Endoglycosidase F treatment of the Mr = 80,000 receptors generated a single, labeled polypeptide with a Mr = 59,000 which migrated as a narrow band. PTH receptors on ROS 17/2.8 cells appear to be monomeric plasma membrane glycoproteins with an apparent Mr of 80,000 which contain a Mr = 59,000 polypeptide backbone and a polymeric arrangement of N-acetylglucosamine with N-acetylneuraminic acid as major terminal sugar residues.  相似文献   

11.
Nidogen: a new, self-aggregating basement membrane protein   总被引:21,自引:0,他引:21  
Nidogen was purified from a mouse tumor basement membrane where it accounted for 2-3% of the total proteins. It was isolated as two forms (A and B) of a monomer (Mr = 80000) each consisting of a single polypeptide chain folded into a globular head connected to a small tail. The B form of the monomer was shown to be capable of aggregating into a nest-like structure (Mr greater than 250000). A smaller form (Mr = 45000) was observed in some of the extracts. The amino acid composition of nidogen was different to that of other basement membrane proteins. It contained about 10% carbohydrate, with N-linked and O-linked oligosaccharide chains in similar proportions. Isoelectrofocussing demonstrated a limited heterogeneity of nidogen with pI in the range 6.5 - 7. Monomeric nidogen failed to interact with other basement membrane components and heparin. Aggregation could be induced by limited proteolysis and was reversed by detergents or high salt concentrations. Together with the observation that most of the nidogen could be solubilized only after destroying the collagenous matrix, the data indicate that aggregation of nidogen reflects an activity involved in matrix assembly. Specific antibodies raised against nidogen did not distinguish between the monomeric and aggregated form of the protein but showed that the fragment was antigenically deficient. These antibodies did not cross-react with collagen type IV, laminin, entactin and heparansulfate proteoglycan. Immunofluorescence staining and absorption studies demonstrated that nidogen is a common component of authentic basement membranes. Larger forms of nidogen (Mr about 100000 and 150000) were found in organ cultures of Reichert's membrane suggesting that it is synthesized in precursor forms.  相似文献   

12.
Rat kidney gamma-glutamyl transpeptidase is an amphipathic heterodimer, anchored to the lumenal surface of brush-border membranes via the NH2-terminal portion of its heavy subunit. The Mr values of the two subunits of detergent-solubilized enzyme are approximately 51,000 (heavy) and 22,000 (light), respectively. Biosynthesis of transpeptidase was studied in renal slices incubated with L-[35S]methionine. Transpeptidase-related proteins were isolated by immunoprecipitation with anti-transpeptidase antibodies. The major species seen after relatively short pulse times is a 78,000-dalton protein. Immunological characterization, kinetic, and pulse-chase studies indicate that the Mr = 78,000 species is the precursor of the two subunits of the enzyme. Like the dimeric enzyme, the Mr = 78,000 species contains both the core and the peripheral sugar, fucose, on its oligosaccharide moieties. Since, only the labeled dimeric enzyme appears in the brush-border membranes, conversion of the Mr = 78,000 species to the two subunits presumably occurs after its arrival at the Golgi but before its transport to the brush-border surface.  相似文献   

13.
A Mr = 110,000 glycoprotein, GP 110, was partially purified using wheat germ agglutinin-Sepharose affinity chromatography from a bile canalicular-enriched membrane fraction denoted N2u of rat liver. This fraction was subjected to preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the Mr = 110,000 polypeptide was excised and used as an immunogen in rabbits. The antisera were found to specifically recognize a Mr = 110,000 polypeptide, named GP 110, in the N2u membrane fraction. In isolated hepatocytes, GP 110 was readily accessible to cell surface iodination catalyzed by lactoperoxidase at 4 degrees C and was judged by immunoprecipitation studies to contain about 2% of total radioactivity incorporated into externally oriented proteins of the cell. Immunoprecipitated GP 110 was shown by two-dimensional polyacrylamide gel electrophoresis to migrate with an approximate pI of 4.9. Indirect immunofluorescence on frozen liver sections demonstrated that GP 110 was primarily localized in the bile canaliculus. In corroborative studies employing subcellular fractionation, it was found that GP 110 was enriched nearly 19-fold in P2, a plasma membrane fraction primarily derived from the sinusoidal domain, and 44-fold in N2u. In contrast, only low levels of GP 110 were present in endoplasmic reticulum, mitochondrial, cytosolic, and nuclear-enriched fractions of liver. The physiological function of GP 110 is as yet unknown; antisera to it did not immunoprecipitate other known bile canalicular proteins of similar molecular weights. GP 110 was found to be extensively glycosylated relative to other known membrane proteins; approximately 33% of the apparent molecular weight appear to be carbohydrate. In agreement, limited removal of N-linked carbohydrate chains indicated that there are approximately eight chains/GP 110 polypeptide. Neuraminidase treatment of GP 110 resulted in a desialylated Mr = 85,000 polypeptide suggesting that the majority of carbohydrate chains on GP 110 are of the complex type.  相似文献   

14.
mRNA extracted from rabbit synovial fibroblasts which had been induced to produce large amounts of collagenase (EC 3.4.23.7) by urate crystals was translated in a cell-free wheat germ system. Collagenase was identified by immunoprecipitation using mono-specific antibody to rabbit synovial collagenase. In the absence of microsomal membranes, a single precursor with Mr = 59,000 was synthesized. This polypeptide was susceptible to proteolytic degradation. In the presence of canine pancreatic microsomes, the nascent protein was processed to a polypeptide with Mr = 57,000 (identical in mobility on sodium dodecyl sulfate-gel electrophoresis to the major latent collagenase secreted from cells) and was protected from tryptic digestion unless a detergent was used to disrupt the membranes. In addition to Mr = 57,000 material, cells secreted immunologically reactive latent collagenase with Mr = 61,000. High molecular weight collagenase was separated from Mr = 57,000 species by binding to concanavalin a-Sepharose, suggesting that this enzyme was a product of post-translational glycosylation. Both latent enzymes were activated by trypsin and human plasma kallikrein to Mr = 45,000 and 49,000. The evidence indicates that rabbit synovial fibroblast collagenase is synthesized and secreted as a single polypeptide zymogen, not as an enzyme-inhibitor complex.  相似文献   

15.
In the present study, we examined the biosynthesis and the maturation of two distinct membrane glycoproteins detected by two monoclonal antibodies (RL388 and RL119), which were selected on the basis of their ability to stimulate the production of interleukin 2 by a subline of the murine EL4 thymoma. RL388 detected a disulfide-linked heterodimer complex (Mr = 130,000) composed of a glycosylated heavy (Mr = 86,000) and a nonglycosylated light (Mr = 39,000) subunit. The unglycosylated precursor of the heavy chain was a polypeptide of Mr = 57,500, which was converted upon maturation into a Mr = 73,000 core-glycosylated intermediate, and then into the Mr = 86,000 surface-expressed molecule. Partial endo-H digestion of the core-glycosylated form suggested the presence of four N-linked glycan units. The antibody reacted with a protein determinant expressed on the mature form as well as the unglycosylated precursor of the heavy chain. Moreover, both subunits assembled rapidly during biosynthesis, and the glycosylation of the heavy chain was not required for this association. Taken together, these data suggest that the antigen detected by RL388 may be the murine homologue of the human 4F2 antigen. The antigen identified by RL119 was a surface glycoprotein of Mr = 55,000 with three to five N-linked glycan units. The unglycosylated precursor polypeptide was of Mr = 29,000. The fully core-glycosylated form of Mr = 41,000, which was detected after inhibition of glucosidase I with 1-deoxynojirimycin, was converted into a Mr = 39,000 intermediate, and upon further trimming, into a Mr = 36,000 endo-H-sensitive form. The latter could be detected for chase periods of over several hours, thus suggesting a low rate of intracellular processing. The wide cellular distribution of the molecules identified by RL388 and RL119 and their preferential expression on the surface of growing cells suggests that they may be associated with cell activation events.  相似文献   

16.
The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as judged by its increased electrophoretic mobility (Mr 210 000 after treatment). The labelling of this form decreased during a chase of 120 min and instead two polypeptides of Mr 245 000 and 160 000 occurred, which both barely had their electrophoretic mobility changed by treatment with endo H. The Mr 160 000 polypeptide is of the same size as the mature lactase-phlorizin hydrolase and was the only form expressed in the microvillar membrane. Together, these data are indicative of an intracellular proteolytic cleavage during transport. The presence of leupeptin during labelling prevented the appearance of the Mr 160 000 form but not that of the Mr 245 000 polypeptide, suggesting that the proteolytic cleavage takes place after trimming and complex glycosylation. The proteolytic cleavage was not essential for the transport since the precursor was expressed in the microvillar membrane in the presence of leupeptin.  相似文献   

17.
Biosynthesis of mammalian DNA ligase   总被引:2,自引:0,他引:2  
A monospecific antibody against calf thymus DNA ligase composed of a single polypeptide with Mr = 130,000 cross-reacts with rodent and calf thymus DNA ligases. The antibody precipitates a single Mr = 200,000 polypeptide from detergent lysates of [3H] leucine-labeled mouse Ehrlich tumor cells and calf thymocytes. Pulse-chase experiments show that the Mr = 200,000 polypeptide in Ehrlich tumor cells has a half-life of about 0.5 h. In addition to the Mr = 200,000 polypeptide, a Mr = 130,000 polypeptide is detected in the partially purified enzyme preparations from radiolabeled Ehrlich tumor cells. These results suggest that DNA ligase is synthesized in mammalian cells as a Mr = 200,000 polypeptide and that the Mr = 200,000 polypeptide is degraded to a Mr = 130,000 polypeptide by a limited proteolysis in vitro.  相似文献   

18.
3-Hydroxy-3-methylglutaryl(HMG)-coenzyme A reductase purified from rat liver in the absence of protease inhibitors is composed of two distinct polypeptides of Mr = 51,000 and 52,500. Antibody raised to enzyme purified from rats fed a diet supplemented with cholestyramine and mevinolin inactivated HMG-CoA reductase. The antibody specifically precipitated a polypeptide of Mr = 94,000 from rat liver cells that had been previously incubated with [35S]methionine. The immunoprecipitation of the 35S-labeled polypeptide of Mr = 94,000 was prevented by addition of unlabeled pure HMG-CoA reductase (Mr = 51,000 and 52,500). Incubation of rat liver cells with mevalonolactone resulted in a decreased activity of HMG-CoA reductase and in a 40% decrease in the rate of incorporation of [35S]methionine into the immunoprecipitable reductase polypeptide of Mr = 94,000. In pulse-chase experiments, mevalonolactone enhanced the rate of degradation of the Mr = 94,000 polypeptide 3-fold. We propose that endogenous microsomal HMG-CoA reductase has a subunit of Mr = 94,000 and that the synthesis and degradation of this polypeptide are regulated by either mevalonolactone or, more likely, a product of mevalonolactone metabolism.  相似文献   

19.
Maltase-glucoamylase (MGA) was immunoprecipitated from detergent extracts of brush border membranes of the human small intestinal mucosa. Electrophoretic analysis of the precipitates under denaturing conditions revealed a single polypeptide of Mr = 335,000 in the presence or absence of reducing agents. Cross-linking of brush border membranes with the homobifunctional reagent dithiobis(succinimidylpropionate) did not result in considerable changes in the electrophoretic pattern of MGA. In contrast, aminopeptidase N, used in these studies as a control glycoprotein of the brush border membrane revealed dimeric structures of its single subunit in the presence of dithiobis(succinimidylpropionate). These data suggest that MGA is expressed in the human small intestinal brush border as a monomeric polypeptide. The biosynthesis of MGA was studied by pulse-labeling of human intestinal biopsy specimens or mucosal explants in organ culture. Continuous labeling with [35S]methionine for 30 min revealed a single polypeptide high mannose precursor of Mr = 285,000 (MGAh) which matures after 4 h of labeling to the Mr = 335,000 as judged by the susceptibility of these two forms to endo-beta-N-acetylglucosaminidase H. Owing to the absence of pancreatic secretions in the culture medium and the isolation of an identical species from nonlabeled mucosa, this result indicates that the Mr = 335,000 does not undergo an in situ extracellular cleavage by intraluminal proteases. Further, biosynthetically labeled, intracellularly cleaved polypeptides corresponding to the high mannose precursor or mature forms of MGA were not detected. The mature form of MGA (MGAm) bears in addition to N-linked glycans also O-glycosidically linked oligosaccharides. In fact, endo-beta-N-acetylglucosaminidase F/glycopeptidase F treatment of MGAm followed by chemical deglycosylation with trifluoromethanesulfonic acid revealed approximately 35,000 daltons of O-linked sugars. Furthermore, MGAm as well as its N-linked sugars-depleted form bound to Helix pomatia lectin which has specificity toward Gal-GalNAc structures. In addition, the data were suggestive of a post-translational O-glycosylation of the molecule since (i) the high mannose precursor of MGA did not bind to H. pomatia lectin and (ii) its endo-beta-N-acetylglucosaminidase H or endo-beta-N-acetylglucosaminidase F/glycopeptidase F form displayed an apparent molecular weight similar to that obtained upon endo-beta-N-acetylglucosaminidase F/glycopeptidase F/trifluoromethanesulfonic acid deglycosylation. Finally, pulse-chase experiments revealed a relatively slow rate of post-translational processing of MGA in comparison to aminopeptidase N.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Glutathione-degrading enzymes of microvillus membranes   总被引:4,自引:0,他引:4  
Microvillus membranes from rat kidney, jejunum, and epididymis have been purified by the Ca precipitation method. The membranes exhibit enrichment in specific activities of gamma-glutamyl transpeptidase, aminopeptidase M, and a dipeptidase. The latter has been characterized and shown to be the principal activity responsible for the hydrolysis of S derivatives of Cys-Gly (including cystinyl-bis-glycine (Cys-bis-Gly) and 5-hydroxy-6-S-cysteinylglycyl-1-7,9-trans-11,14-cis-eicosatetraenoic acid (leukotriene D4)). A method is described for the simultaneous purification of papain-solubilized forms of the three enzymes from renal microvilli. Dipeptidase (Mr = 105,000) appears to be a zinc metalloprotein composed of two Mr = 50,000 subunits. The enzyme is severalfold more effective in the hydrolysis of dipeptides than aminopeptidase M. Dipeptidase, in contrast to aminopeptidase M, is inhibited by thiol compounds; Cys-Gly, in particular, is a potent inhibitor (Ki = 20 microM). The inhibition of dipeptidase by thiols has been employed to probe the relative significance of dipeptidase and aminopeptidase M in the metabolism of glutathione and its derivatives at the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号