首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The enlargement of the genome size and the decrease in genome compactness with increase in the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, it has been suggested that the insertion of transposable elements might have an important role in driving intron evolution. The analysis of large portions of the human genome demonstrated that a relatively recent (50 to 100 MYA) accumulation of transposable elements appears to be biased, favoring a preferential insertion of LINE1 transposons into sex chromosomes rather than into autosomes. In the present work, the effect of chromosomal location on the increase in size of introns was evaluated with a comparative analysis performed on pairs of human paralogous genes, one located on the X chromosome and the second on an autosome. A phylogenetic analysis was also performed on the X-encoded proteins and their paralogs to confirm orthology-paralogy and to approximately estimate the time of gene duplication. Statistical analysis of total intron length for each pair of paralogous genes provided no evidence for a larger size of introns in the gene copies located on the X chromosome. On the opposite, introns of autosomal genes were found to be significantly longer than introns of their X-linked paralogs. Likewise, LINE1 elements were not significantly more frequent in X-chromosome introns, whereas the frequency of SINE elements showed a marginally significant bias toward autosomal introns.  相似文献   

3.
Hood ME 《Genetica》2005,124(1):1-10
The small genomes of fungi are expected to have little repetitive content other than rDNA genes. Moreover, among asexual or highly selfing lineages, the diversity of repetitive elements is also expected to be very low. However, in the automictic fungus Microbotryum violaceum, a very large proportion of random DNA fragments from the autosomes and the fungal sex chromosomes are repetitive in nature, either as retrotransposon or helicase sequences. Among the retrotransposon sequences, examples were found from each major kind of elements, including copia, gypsy, and non-LTR sequences. The most numerous were copia-like elements, which are believed to be rare in fungi, particularly among basidiomycetes. The many helicase sequences appear to belong to the recently discovered Helitron type of transposable elements. Also, sequences that could not be identified as a known type of gene were also very repetitive within the database of random fragments from M. violaceum. The differentiated pair of fungal sex chromosomes and suppression of recombination may be the major forces determining the highly repetitive content in the small genome of M. violaceum.  相似文献   

4.
Major changes in chromosome number and structure are linked to a series of evolutionary phenomena, including intrinsic barriers to gene flow or suppression of recombination due to chromosomal rearrangements. However, chromosome rearrangements can also affect the fundamental dynamics of molecular evolution within populations by changing relationships between linked loci and altering rates of recombination. Here, we build chromosome-level assembly Eueides isabella and, together with a recent chromosome-level assembly of Dryas iulia, examine the evolutionary consequences of multiple chromosome fusions in Heliconius butterflies. These assemblies pinpoint fusion points on 10 of the 20 autosomal chromosomes and reveal striking differences in the characteristics of fused and unfused chromosomes. The ten smallest autosomes in D. iulia and E. isabella, which have each fused to a longer chromosome in Heliconius, have higher repeat and GC content, and longer introns than predicted by their chromosome length. When fused, these characteristics change to become more in line with chromosome length. The fusions also led to reduced diversity, which likely reflects increased background selection and selection against introgression between diverging populations, following a reduction in per-base recombination rate. We further show that chromosome size and fusion impact turnover rates of functional loci at a macroevolutionary scale. Together these results provide further evidence that chromosome fusion in Heliconius likely had dramatic effects on population level processes shaping rates of neutral and adaptive divergence. These effects may have impacted patterns of diversification in Heliconius, a classic example of an adaptive radiation.  相似文献   

5.
Phylogenetic relationships in the genus Paphiopedilum were studied using nuclear ribosomal internal transcribed spacer (ITS) and plastid sequence data. The results confirm that the genus Paphiopedilum is monophyletic, and the division of the genus into three subgenera Parvisepalum, Brachypetalum and Paphiopedilum is well supported. Four sections of subgenus Paphiopedilum (Pardalopetalum, Cochlopetalum, Paphiopedilum and Barbata) are recovered as in a recent infrageneric treatment, with strong support. Section Coryopedilum is also recovered, with low bootstrap but high posterior probability values for support of monophyly. Relationships in section Barbata remain unresolved, and short branch lengths and the narrow geographical distribution of many species in the section suggest that it possibly underwent rapid radiation. Mapping chromosome and genome size data (including some new genome size measurements) onto the phylogenetic framework shows that there is no clear trend in increase in chromosome number in the genus. However, the diploid chromosome number of 2n = 26 in subgenera Parvisepalum and Brachypetalum suggests that this is the ancestral condition, and higher chromosome numbers in sections Cochlopetalum and Barbata suggest that centric fission has possibly occurred in parallel in these sections. The trend for genome size evolution is also unclear, although species in section Barbata have larger genome sizes than those in other sections. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 176–196.  相似文献   

6.
BACKGROUND AND AIMS: A key target set at the second Plant Genome Size Workshop, held at the Royal Botanic Gardens, Kew in 2003, was to produce first DNA C-value data for an additional 1 % of angiosperm species, and, within this, to achieve 75 % familial coverage overall (up from approx. 50 %) by 2009. The present study targeted eudicot families for which representation in 2003 (42.5 %) was much lower than monocot (72.8 %) and basal angiosperm (69.0 %) families. METHODS: Flow cytometry or Feulgen microdensitometry were used to estimate nuclear DNA C-values, and chromosome counts were obtained where possible. KEY RESULTS: First nuclear DNA C-values are reported for 20 angiosperm families, including 18 eudicots. This substantially increases familial representation to 55.2 % for angiosperms and 48.5 % for eudicots. CONCLUSIONS: The importance of targeting specific plant families to improve familial nuclear DNA C-value representation is reconfirmed. International collaboration will be increasingly essential to locate and obtain material of unsampled plant families, if the target set by the second Plant Genome Size Workshop is to be met.  相似文献   

7.
This paper reports first DNA C-values for 28 angiosperm genera. These include first DNA C-values for 25 families, of which 16 are monocots. Overall familial representation is 47.2 % for angiosperms, but is now much higher for monocots (75 %) and basal angiosperms (73.1 %) than for eudicots (38.7 %). Chromosome counts are reported for 22 taxa, including first records for six genera plus seven species. Unrepresented families will become increasingly enriched for monotypic taxa from obscure locations that are harder to access. Thus, completing familial representation for genome size for angiosperms may prove impossible in any short period, and progress towards this goal will become slower.  相似文献   

8.
Staphylococcus xylosus is a ubiquitous bacterium frequently isolated from mammalian skin and occurring naturally on meat and dairy products. A physical and genetic map of the S. xylosus C2a chromosome was constructed by pulsed-field gel electrophoresis analysis after digestion with AscI, ApaI, I-CeuI, SfiI and SmaI enzymes and hybridization analysis. The chromosome size was estimated to be 2868+/-10 kb. Thirty-three genetic markers were mapped. The probable origin of replication (oriC) was positioned. Six rrn loci were located, and their orientation was determined. The chromosomes of six additional S. xylosus strains were also analysed by I-CeuI digestion, and an intraspecies diversity of the chromosome size and the number of rrn operons was shown.  相似文献   

9.
There are relatively few studies of DNA content in the Vernonieae (Asteraceae) tribe. The first studies were realized in the Lessingianthus genus and determined the DNA content of 25 species. After DNA content, ploidy level and the total karyotype were compared in 6 Chrysolaena species. The aim of this study was to present, for the first time, the DNA content values of Vernonanthura and Vernonia and to thereby expand knowledge of the Vernonieae tribe. A total of 19 natural populations belonging to the genera Vernonanthura and Vernonia were studied for the first time. The results were compared with other Vernonieae genera and with other Asteraceae tribes. Our results found that Vernonieae have the smallest range of 1C value variation in Asteraceae. Furthermore, there were differences in the DNA content of Vernonia and Vernonanthura. These results show that low DNA content and herbaceous habit in Vernonia are characters derived from the higher DNA content and woody habit present in Vernonanthura. These results could indicate a hybrid origin of one species and allow the determination of both the ploidy and chromosome number of other taxa. The results observed in Vernonanthura species showed a highly significant correlation between 1C-value and latitude.  相似文献   

10.
Polyploidy, an important factor in eukaryotic evolution, is especially abundant in angiosperms, where it often acts in concert with hybridization to produce allopolyploids. The application of molecular phylogenetic techniques has identified the origins of numerous allopolyploids, but little is known on genomic and chromosomal consequences of allopolyploidization, despite their important role in conferring divergence of allopolyploids from their parental species. Here, using several plastid and nuclear sequence markers, we clarify the origin of tetra- and hexaploids in a group of American daisies, allowing characterization of genome dynamics in polyploids compared to their diploid ancestors. All polyploid species are allopolyploids. Among the four diploid gene pools, the propensity for allopolyploidization is unevenly distributed phylogenetically with a few species apparently more prone to participate, but the underlying causes remain unclear. Polyploid genomes are characterized by differential loss of ribosomal DNA loci (5S and 35S rDNA), known hotspots of chromosomal evolution, but show genome size additivity, suggesting limited changes beyond those affecting rDNA loci or the presence of processes counterbalancing genome reduction. Patterns of rDNA sequence conversion and provenance of the lost loci are highly idiosyncratic and differ even between allopolyploids of identical parentage, indicating that allopolyploids deriving from the same lower-ploid parental species can follow different evolutionary trajectories.  相似文献   

11.
In this minireview I briefly describe the new methods suggested for cloning sequences identical by descent, homo-or hemizygously deleted, amplified or polymorphic, and compare them with the most efficient techniques developed earlier. The new methods include cloning of identical sequences (CIS), cloning of polymorphic sequences (COP), and cloning of deleted sequences (CODE). Although these methods are based on the same combination of biochemical techniques, their aims are different. These methods are fully complementary, and they may be combined to analyze a given object. If one aims to clone a disease gene responsible for familial cancer syndrome, these methods may be applied as follows. CIS can be used to identify the sequences identical by descent comparing the DNA obtained from affected or unaffected family members. COP can be used to find sequences that are different between affected and unaffected members, and CODE would be useful to compare tumor and normal (control) samples to isolate, deleted sequences (putative candidate tumor suppressor genes) and amplified sequences (putative oncogenes). The COP and CODE procedures can be applied to analyze the CpG islands, thus allowing direct candidate gene identification.  相似文献   

12.
Chicken red blood cells (CRBCs) are widely used as standards for DNA content determination. Cytogenetic data have shown that the Z sex chromosome is approximately twice as large as the W, so that the DNA content differs to some extent between male (ZZ) and female (ZW) chickens. Despite this fact, male and female CRBCs have been indiscriminately used in absolute genome size determination. Our work was conducted to verify whether the DNA content differences between male and female Gallus gallus domesticus “Leghorn” nuclei and ZZ/ZW chromosomes can be resolved by image cytometry (ICM). Air-dried smears stained by Feulgen reaction were used for nuclei analysis. Chicken metaphase spreads upon Feulgen staining were analyzed for obtaining quantitative information on the Z and W chromosomes. Before each capture session, we conducted quality control of the ICM instrumentation. Our results from nuclear measurements showed that the 2C value is 0.09 pg higher in males than in females. In chromosomes, we found that the Z chromosome shows 200% more DNA content than does the W chromosome. ICM demonstrated resolution power to discriminate low DNA content differences in genomes. We suggest prudence in the general use of CRBC 2C values as standards in comparative cytometric analysis. (J Histochem Cytochem 58:229–235, 2010)  相似文献   

13.
14.
Rasch EM 《Journal of morphology》2006,267(11):1316-1325
The unique chromosome biology of the fungus fly Sciara coprophila has fascinated investigators for over 80 years. Male meiosis exhibits a monopolar spindle, nonrandom segregation of imprinted chromosomes and nondisjunction of the X chromosome. The unusual mechanism of sex determination requires selective elimination of X chromosomes in embryogenesis. Supernumerary (L) chromosomes are also eliminated from the soma during early cleavage divisions. Distinctive DNA puffs on the larval salivary gland chromosomes are sites of DNA amplification. As a foundation for future genome studies to explore these many unusual phenomena, we have used DNA-Feulgen cytophotometry to determine genome size from hemocyte nuclei of male (X0) and female (XX) larvae and adults. The DNA content of the X chromosome is approximately 0.05 pg DNA and the autosomal complement is approximately 0.45 pg DNA. Measurements of DNA levels for individual sperm from adults showed that the DNA contribution of the germ line-limited (L) chromosomes constitutes as much as 35% of the DNA of the male gamete. A parallel study using Sciara ocellaris, a related species lacking L chromosomes, confirmed the presence of two X chromosomes in the sperm of this species.  相似文献   

15.
16.
Nutrient regeneration and respiration rates of natural zooplankton from a tropical reservoir were experimentally measured. Excretion rates of ammonia (Ea), orthophosphate (Ep) and community respiration rates (R) were estimated considering the variations in the concentrations of ammonia, orthophosphate and dissolved oxygen between control and experimental units. The ranges obtained for these rates from the 2 h assays were Ea = 1.95–4.95 μg N-NH4 · mg · DW−1 · h−1; Ep = 0.12–0.76 μg P-PO4 mg DW−1 · h−1. Respiratory rates were quite constant (R = 0.01–0.02 mg O2 · mg DW−1 · h−1). The uptake of nutrients due to bacteria can affect the experimental determination of excretion rates of zooplankton. Orthophosphate release increased from 0.28 to 0.82 μg P-PO4 · mg DW−1 · h−1 when bacterial activity was depleted by antibiotic addition in experimental vessels (Exp IV). This demonstrates that free living bacteria are able to consume promptly most phosphorus excreted by zooplankton. Ammonia excretion rates were lower in experimental units containing antibiotics. Lower excretion rates were also obtained with longer exposure times and higher biomass levels in the experimental units. Finally, this study also showed that zooplankton excretion can affect significantly turn over rates of total phosphorus in Pampulha Reservoir. In some periods, specially during the dry season when zooplankton biomass was very high, phosphorus release by zooplankton, during one single day, can be as high as 40% of the total phosphorus content in lake water (Turn over time = 2.5 days).  相似文献   

17.
18.
19.
植物核DNA含量(2C-值)与倍性水平是重要的植物学基本特征,是进行种群进化、物种分类和生态学等研究的有力证据.为确定中国吊钟花属(Enkianthus Lour.)各物种的核DNA含量与倍性水平并探究该属植物在种间、种内核DNA含量差异,该研究以6种中国吊钟花属植物共23个居群60个样品为试验材料,以水稻品种'日本晴...  相似文献   

20.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号