首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):306-310
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[3H3C]methionine, l-[14CH3]methionine, or [1,2-14C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

2.
Cystathionine γ-synthase (CGS, EC 4.2.99.9), the first committed enzyme in methionine biosynthesis, was over-expressed in Arabidopsis thaliana by introducing in the genome of this plant the coding sequence of the Arabidopsis enzyme under the control of the cauliflower mosaic virus 35S promoter. In order to target the recombinant protein to the chloroplast, the transgene included the sequence encoding the N-terminal transit peptide of Arabidopsis CGS. CGS activity and polypeptide were increased several fold in these plants. There was a markedly increased level of soluble methionine in the leaves of the transformed plants, up to 15-fold, indicating that CGS is a rate-limiting enzyme in this metabolic pathway. In addition, the transformed plants strongly over-accumulated S-methylmethionine, but not S-adenosylmethionine, in agreement with the view that S-methylmethionine corresponds to a storage form of labile methyl groups in plants and/or plays a role in preventing S-adenosylmethionine accumulation. The same strategy was used to increase the level of cystathionine β-lyase (CBL, EC 4.4.1.8), the second committed enzyme in methionine biosynthesis, in transformed A. thaliana. Despite an increase in both CBL activity and polypeptide in transformed Arabidopsis plants over-expressing Arabidopsis CBL, there was very little change in the contents of soluble methionine and S-methylmethionine, suggesting strongly that CBL is not rate limiting in the methionine biosynthetic pathway.  相似文献   

3.
Assay for S-adenosylmethionine: methionine methyltransferase   总被引:1,自引:0,他引:1  
A quantitative assay for S-adenosylmethionine: methionine methyltransferase in phosphate buffer extracts has been developed. This enzyme catalyzes the biosynthesis of S-methylmethionine from methionine and S-adenosylmethionine. The radioactively labeled product, S-methylmethionine, is first separated from the radioactively labeled substrate, l-methionine, by means of ion-exchange chromatography. Once separated thusly, the amount present can then be directly determined by the use of a liquid scintillation spectrometer.  相似文献   

4.
Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.  相似文献   

5.
Absorption of 35S-l-methionine by Chlorella vulgaris was measured at concentrations that ranged from 0.1 to 10.0 μmoles/ml. A brief, rapid phase of uptake was followed by a more prolonged, slower phase that was linear only at the lowest concentrations. The radioactivity accumulated by the end of 1 hour's incubation at an exogenous level of 0.1 μmole/ml was retained by the cells despite the inclusion of 10 μmoles/ml of nonradioactive methionine in the rinse medium. As the exogenous concentration was raised, the ratio of intracellular soluble radioactivity to exogenous radioactivity decreased. Analysis of the accumulated, soluble radioactivity showed that 90% was in the form of methionine and that about 10% had been converted to a compound with properties of S-adenosylmethionine. Azide and ethionine were the most effective of the inhibitors tested.  相似文献   

6.
Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet.  相似文献   

7.
Homocysteine-dependent transmethylases utilizing 5-methyltetrahydropteroylglutamic acid and S-adenosylmethionine as methyl donors have been examined using ammonium sulphate fractions prepared from isolated mitochondria of pea cotyledons. Substantial levels of a 5-rnethyltetrahydropteroylglutamate transmethylase were detected, the catalytic properties of this enzyme being found similar to those of a previously reported enzyme present in cotyledon extracts. The mitochondrial 5-CH3-H4PteGlu transmethylase had an apparent Km of 25 μM for the methyl donor, was saturated with homocysteine at 1 mM and was inhibited 50% by l-methionine at 2.5 mM. At similar concentrations of methyl donor the mitochondrial S-adenosylmethionine methyltransferase was not saturated. Mitochondrial preparations were found capable of synthesizing substantial amounts of S-adenosylmethionine but lacked ability to form S-methylmethionine. Significant levels of β-cystathionase, cystathionine-γ-synthase, l-homoserine transacetylase and l-homoserine transsuccinylase were detected in the isolated mitochondria. The activity of the enzymes of homocysteine biosynthesis was not affected by l-methionine in vitro. It is concluded that pea mitochondria have ability to catalyze the synthesis of methionine de novo.  相似文献   

8.
The metabolism of d- and l-methionine by immature cotyledons of soybean (Glycine max, L. cv Elf) grown in culture has been investigated using solid-state 13C and 15N nuclear magnetic resonance. d-Methionine is taken up by the cotyledons and converted to an amide, most likely by N-malonylation. About 16% of the l-methionine taken up is incorporated intact into protein, and 25% remains as soluble methionine. Almost two-thirds of the l-methionine that enters the cotyledons is degraded. The largest percentage of this is used in transmethylation of the carboxyl groups of pectin. Methionine is not extensively converted to polyamines. We attribute the stimulation of growth of the cotyledons by exogenous methionine to the bypassing of a rate-limiting methyl-transfer step in the synthesis of methionine itself, and subsequently of pectins and proteins.  相似文献   

9.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

10.
Studies of inhibition of rat spermidine synthase and spermine synthase   总被引:5,自引:4,他引:1  
1. S-Adenosyl-l-methionine, S-adenosyl-l-homocysteine, 5′-methylthioadenosine and a number of analogues having changes in the base, sugar or amino acid portions of the molecule were tested as potential inhibitors of spermidine synthase and spermine synthase from rat ventral prostate. 2. S-Adenosyl-l-methionine was inhibitory to these reactions, as were other nucleosides containing a sulphonium centre. The most active of these were S-adenosyl-l-ethionine, S-adenosyl-4-methylthiobutyric acid, S-adenosyl-d-methionine and S-tubercidinylmethionine, which were all comparable in activity with S-adenosylmethionine itself, producing 70–98% inhibition at 1mm concentrations. Spermine synthase was somewhat more sensitive than spermidine synthase. 3. 5′-Methylthioadenosine, 5′-ethylthioadenosine and 5′-methylthiotubercidin were all powerful inhibitors of both enzymes, giving 50% inhibition of spermine synthase at 10–15μm and 50% inhibition of spermidine synthase at 30–45μm. 4. S-Adenosyl-l-homocysteine was a weak inhibitor of spermine synthase and practically inactive against spermidine synthase. Analogues of S-adenosylhomocysteine lacking either the carboxy or the amino group of the amino acid portion were somewhat more active, as were derivatives in which the ribose ring had been opened by oxidation. The sulphoxide and sulphone derivatives of decarboxylated S-adenosyl-l-homocysteine and the sulphone of S-adenosyl-l-homocysteine were quite potent inhibitors and were particularly active against spermidine synthase (giving 50% inhibition at 380, 50 and 20μm respectively). 5. These results are discussed in terms of the possible regulation of polyamine synthesis by endogenous nucleosides and the possible value of some of the inhibitory substances in experimental manipulations of polyamine concentrations. It is suggested that 5′-methylthiotubercidin and the sulphone of S-adenosylhomocysteine or of S-adenosyl-3-thiopropylamine may be particularly valuable in this respect.  相似文献   

11.
1. Direct or indirect inhibitors of l-ornithine decarboxylase (EC 4.1.1.17), structurally related or unrelated to l-ornithine, including dl-α-difluoromethylornithine, α-methylornithine and 1,3-diaminopropane, used alone or in combination, decreased polyamine concentrations in rat hepatoma tissue culture (HTC) cells and increased S-adenosyl-l-methionine decarboxylase activity (EC 4.1.1.50). 2. Comparison of the catalytic properties of S-adenosyl-l-methionine from cells with elevated and normal activities revealed no apparent modification of the catalytic site as judged by affinity for the substrate, stimulation by di- and tri-amines and inhibition by methylglyoxal bis-(guanylhydrazone). 3. Actinomycin D and cycloheximide, and RNA and a proteinsynthesis inhibitor respectively, blocked the increase of S-adenosyl-l-methionine decarboxylase activity elicited by α-difluoromethylornithine. In polyamine-depleted cells the apparent half-life of elevated S-adenosyl-l-methionine decarboxylase activity, determined by inhibition of protein synthesis, was 2.5-fold longer than in control cells. The present results suggest that elevation of S-adenosyl-l-methionine decarboxylase activity by α-difluoromethylornithine is due to stabilization of the enzyme. 4. Restoration of the normal intracellular putrescine content, by addition of putrescine to the medium of polyamine-deficient cells, transiently increased S-adenosyl-l-methionine decarboxylase activity. Thereafter, intracellular conversion of putrescine into spermidine was accompanied by inactivation of the enzyme at a rate that was similar to that found on addition of spermidine itself. No relationship between total intracellular spermine content and S-adenosyl-l-methionine decarboxylase activity could be established. 5. Addition of 1mm-1,3-diaminopropane to polyamine-deficient cells did not cause a decrease in the activity of S-adenosyl-l-methionine decarboxylase, whereas addition of 1,5-diaminopentane (cadaverine) did. 1,3-Diamino-N-(3-aminopropyl)propane did not accumulate in cells treated with α-difluoromethylornithine and 1,3-diaminopropane, whereas addition of 1,5-diaminopentane led to the accumulation of 1,5-diamino-N-(3-aminopropyl)pentane. 1,3-Diamino-N-(3-aminopropyl)propane (10μm) was as effective as spermidine in decreasing S-adenosyl-l-methionine decarboxylase activity. Thus effectiveness of a diamine in decreasing enzyme activity is related to its capability of being converted into a closely structurally related homologue of spermidine by spermidine synthase. 6. The spermidine site of action appears to be post-translational since (a) the spermidine-induced decrease of S-adenosyl-l-methionine activity was not prevented by actinomycin D and (b) spermidine in the presence of cycloheximide led to a synergistic inactivation of the enzyme with a decay rate that progressively approached control values. Altogether these results are indirect evidence for a strict negative control of S-adenosyl-l-methionine decarboxylase by spermidine and substantiate previous findings [Mamont, Duchesne, Grove & Tardif (1978) Exp. Cell Res. 115, 387–393]. Spermidine appears to act on some processes involved in denaturation and/or degradation of the enzyme protein. Putrescine appears to decrease the rate of these processes. The physiological significance of the regulatory control of S-adenosyl-l-methionine decarboxylase is discussed.  相似文献   

12.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

13.
Supplementation of the culture medium of Candida utilis with d-methionine or 2-methyl-dl-methionine leads to intracellular synthesis of S-adenosyl-d-methionine and S-adenosyl-2-methylmethionine. The identity of the sulfonium compounds was established by tracer technique, chromatography, acid hydrolysis, and examination of the released methionine and 2-methylmethionine. In addition to the expected sulfur amino acid component, both adenosine sulfonium fractions contained S-adenosyl-l-methionine. This is explained by transmethylation of S-adenosyl-d-methionine and of S-adenosyl-2-methyl-methionine with endogenous l-homocysteine; the resulting l-methionine reacts with ATP to form S-adenosyl-l-methionine. Experiments with purified cell-free preparations of S-adenosylmethionine synthetase (EC 2.5.1.6) from C. utilis confirmed the reaction of ATP with d-methionine or 2-methyl-dl-methionine.  相似文献   

14.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

15.
Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.  相似文献   

16.
We have investigated the enzymatic formation of S-adenosylmethionine in extracts of a variety of normal and oncogenically-transformed human and rat cell lines which differ in their ability to grow in medium in which methionine is replaced by its immediate precursor homocysteine. We have localized the bulk of the S-adenosylmethionine synthetase activity to the post-mitochondrial supernatant. We show that in all cell lines a single kinetic species exists in a dialyzed extract with a Km for methionine of about 3–12 μM. In selected lines we have demonstrated a requirement for Mg2+ in addition to that needed to form the Mg·ATP complex for enzyme activity and have shown that the enzyme can be regulated by product feedback inhibition. Because we detect no differences in the enzymatic ability of these cell extracts to utilize methionine for S-adenosylmethionine formation in vitro, we suggest that the failure of oncogenically-transformed cell lines to grow in homocysteine medium may result from the decreased methionine pools in these cells or from the loss of ability of these cells to properly metabolize homocysteine, adenosine, or their cellular product S-adenosylhomocysteine.  相似文献   

17.
S-Methylmethionine Metabolism in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium-accumulating Astragalus spp. contain an enzyme which specifically transfers a methyl group from S-methylmethionine to the selenol of selenocysteine, thus converting it to a nontoxic, since nonproteinogenic, amino acid. Analysis of the amino acid sequence of this enzyme revealed that Escherichia coli possesses a protein (YagD) which shares high sequence similarity with the enzyme. The properties and physiological role of YagD were investigated. YagD is an S-methylmethionine: homocysteine methyltransferase which also accepts selenohomocysteine as a substrate. Mutants in yagD which also possess defects in metE and metH are unable to utilize S-methylmethionine for growth, whereas a metE metH double mutant still grows on S-methylmethionine. Upstream of yagD and overlapping with its reading frame is a gene (ykfD) which, when inactivated, also blocks growth on methylmethionine in a metE metH genetic background. Since it displays sequence similarities with amino acid permeases it appears to be the transporter for S-methylmethionine. Methionine but not S-methylmethionine in the medium reduces the amount of yagD protein. This and the existence of four MET box motifs upstream of yfkD indicate that the two genes are members of the methionine regulon. The physiological roles of the ykfD and yagD products appear to reside in the acquisition of S-methylmethionine, which is an abundant plant product, and its utilization for methionine biosynthesis.  相似文献   

18.
The synthesis of α-tocopherol from 2,3-dimethylphytylquinol and S-adenosyl-l-methionine was achieved using Capsicum annuum fruit chromoplasts. The enzymes involved in the cyclization (2,3-dimethyl-phytylquinol cyclase) and methylation (S-adenosyl methionine:γ-tocopherol methyl-transferase) are both localized in the chromoplast membrane fraction (envelopes and/or a-chlorophyll lamellae), in contrast to the stroma fraction.  相似文献   

19.
Propargylglycine, vinylglycine, and cysteine each cause irreversible inactivations of cystathionine γ-synthase (and, in parallel, of O-phosphohomoserine sulfhydrylase) activities in crude extracts of Lemna paucicostata. Inactivation by propargylglycine or vinylglycine is completely prevented by 40 millimolar O-phospho- or O-succinyl-l-homoserine; that by cysteine is only partially prevented. Propargylglycine (PAG), the most potent of these inhibitors, causes rapid and drastic inactivation of both activities in intact Lemna. Studies of plants growing in steady states in the presence of various concentrations (0-150 nanomolar) of PAG showed that 16% of control activity is necessary and sufficient to maintain normal rates of growth and methionine biosynthesis, and that 10% of control activity is essential for viability. Addition of either 2 micromolar methionine or 31 micromolar cystine to growth medium containing 150 nanomolar PAG permits growth at 75 to 100% of control rates when enzyme activity is less than 10% of control. Whereas methionine presumably rescues by directly providing the missing metabolite, cystine may rescue by enhancing substrate accumulation and thereby promoting flux through residual cystathionine γ-synthase. The results indicate that the down-regulation of cystathionine γ-synthase to 15% of control which occurs when plants are grown in 2 micromolar methionine (Thompson, Datko, Mudd, Giovanelli Plant Physiol 69: 1077-1083), by itself, is not sufficient to reduce the rate of methionine biosynthesis.  相似文献   

20.
Sato N 《Plant physiology》1988,86(3):931-934
Biosynthesis of the polar group of diacylglyceryl-O-4′-(N,N,N-trimethyl)homoserine (DGTS) was studied in intact cells of Chlamydomonas reinhardtii Dangeard. Among the three C4 amino acids tested, only l-methionine could specifically inhibit the photosynthetic incorporation of [14C]NaHCO3 into the polar group of DGTS. The radioactivity in l-[14C]methionine, which was labeled at either the C3 + C4, the C1, or the methyl carbon, was efficiently incorporated into the polar group of DGTS. These results suggest that the C4 backbone and the S-methyl group of l-methionine are precursors to the C4 backbone and the N-methyl groups of DGTS, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号