首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
S Casjens  M B Adams  C Hall    J King 《Journal of virology》1985,53(1):174-179
In the assembly of bacteriophage P22, precursor particles containing two major proteins, the gene 5 coat protein and the gene 8 scaffolding protein, package the DNA molecule. During the encapsidation reaction all of the scaffolding protein molecules are released intact and subsequently participate in further rounds of DNA encapsidation. We have previously shown that even though it lies in the center of the late region of the genetic map, the scaffolding protein gene is not always expressed coordinately with the remainder of the late proteins and that some feature of the phage assembly process affects its expression. We present here in vivo experiments which show that there is an inverse correlation between the amount of unassembled scaffolding protein and the rate of scaffolding protein synthesis and that long amber fragments of the scaffolding protein can turn down the synthesis of intact scaffolding protein in trans. These results support a model for scaffolding protein regulation in which the feature of the assembly process which modulates the rate of scaffolding protein synthesis is the amount of unassembled scaffolding protein itself.  相似文献   

2.
3.
N15 is the only bacteriophage of Escherichia coli known to lysogenize as a linear plasmid. Clear-plaque mutations lie in at least two regions of the 46-kb genome. We have cloned, sequenced, and characterized the primary immunity region, immB. This region contains a gene, cB, whose product shows homology to lambdoid phage repressors. The cB3 mutation confers thermoinducibility on N15 lysogens, consistent with CB being the primary repressor of N15. Downstream of cB lies the locus of N15 plasmid replication. Upstream of cB lies an operon predicted to encode two products: one homologous to the late repressor of P22 (Cro), the other homologous to the late antiterminator of phi 82 (Q). The Q-like protein is essential for phage development. We show that CB protein regulates the expression of genes that flank the cB gene by binding to DNA at symmetric 16-bp sites. Three sites are clustered upstream of cB and overlap a predicted promoter of the cro and Q-like genes as well as two predicted promoters of cB itself. Two sites downstream of cB overlap a predicted promoter of a plasmid replication gene, repA, consistent with the higher copy number of the mutant, N15cB3. The leader region of repA contains terminators in both orientations and a putative promoter. The organization of these regulatory elements suggests that N15 plasmid replication is controlled not only by CB but also by an antisense RNA and by a balance between termination and antitermination.  相似文献   

4.
5.
Two bacteriophage BF23 late genes, genes 24 and 25, were isolated on a 7.4-kb PstI fragment from the phage DNA, and their nucleotide sequences were determined. Gene 24 encodes a minor tail protein with the expected M(r) of 34,309, and gene 25 located 4 bp upstream of gene 24 encodes a major tail protein with the expected M(r) of 50,329. When total cellular RNA isolated from either phage-infected cells or cells bearing the cloned genes was analyzed by the primer extension method using the primers specific to either gene 25 or gene 24, we identified a possible late gene promoter, designated P25, in the 5'-flanking region of gene 25. This promoter was similar in structure to Escherichia coli promoters for sigma 70. Studies of the translational gene 25- and gene 24-lacZ fusions in the cloned gene system revealed that the promoter P25 was responsible for the expression of both genes 25 and 24 even in the absence of the regulatory genes which were absolutely required for late gene expression in the normal phage-infected cells. These results indicate that the two genes constitute an operon under the control of P25 and that the regulatory gene products of BF23 do not participate directly in specifying the late gene promoter.  相似文献   

6.
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.  相似文献   

7.
8.
9.
10.
11.
We have identified the structural proteins of phage T4 precursor tails. Complete tails, labeled with 14C-labeled amino acids, were isolated from cells infected with mutants blocked in head assembly. The proteins were characterized by sodium dodecyl sulfate-acrylamide gel electrophoresis and subsequent autoradiography. The complete tails are made up of at least fifteen different species of phage proteins.To identify the genes specifying these proteins we prepared 14C-labeled amino acid lysates made with amber mutants defective in each of the twenty-one genes involved in tail assembly. Comparison of the gel pattern of the amber mutant lysates with wild type lysates enabled us to identify the following gene products, with molecular weights in parentheses: P6 (85,000); P7 (140,000); P8 (46,000); P9 (34,000); P10 (88,000); P11 (26,000); P12 (55,000); P15 (35,000); P18 (80,000); P19 (21,000); P29 (77,000). These eleven species are all structural proteins of the tail. The genetically unidentified tail proteins have molecular weights of 42,000, 41,000, 40,000 and 35,000. They are likely to be the products of known phage genes which were not resolved in the crowded middle region of the whole lysate gel patterns. The major tail proteins are all synthesized during the late part of the phage growth cycle.The mobilities of the proteins derived from tails did not differ from the mobilities of the proteins when derived from the unassembled pools of subunits accumulating in mutant infected cells, or when derived from complete phage particles.The genes for at least seven of the structural proteins are contiguous on the genetic map. Genes for proteins needed in many copies seem to be clustered separ- ately from genes whose products are needed in only a few copies. Consideration of protein sizes and published mapping data on phage T4 also suggest that the phage structural proteins are, on the average, much larger than the non-structural proteins.The requirement that at least fifteen different species of proteins must come together in forming a phage tail emphasizes the complexity of this morphogenetic process.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Huang W  McKevitt M  Palzkill T 《Gene》2000,251(2):187-197
Phage display is a widely used method to optimize the binding characteristics of protein-ligand interactions. In addition, it has been used to clone genes from genomic and cDNA libraries based on their ligand-binding characteristics. One difficulty often encountered when expressing heterologous proteins by phage display is the toxicity of the protein on the Escherichia coli host. Previous studies have shown that heterologous protein expression can be tightly controlled using plasmids with the P(BAD) promoter of the arabinose operon of E. coli, and the araC gene, which is both a positive and negative regulator of the promoter. We constructed a set of phage display vectors that utilize the P(BAD) promoter to control the expression of proteins on the surface of the M13 bacteriophage. These vectors exhibit tightly controlled expression of proteins on the surface of the phage. In addition, the amount of protein displayed on the phage is modulated by the amount of arabinose present in the growth medium during phage propagation. This may be useful for altering the stringency of binding enrichment during phage display.  相似文献   

19.
Alternative promoters in the development of bacteriophage plasmid P4.   总被引:16,自引:1,他引:15       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号