首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Crude cytoplasmic extracts from vesicular stomatitis virus (VSV)-infected HeLa cells incorporate radioactive amino acids into hot trichloroacetic acid-precipitable material linearly for 10 to 20 min. The material synthesized in vitro corresponds in molecular weight to four of the five VSV structural proteins. However, synthesis of the viral glycoprotein (G) is significantly reduced, whereas the relative amounts of viral structural proteins L and NS synthesized are increased compared with the ratio of the proteins found in the virion. Fractionation of a VSV-infected crude cytoplasmic extract into a cytoplasmic pellet (20,000 x g for 30 min) and a cytoplasmic supernatant results in a significant reduction in protein synthesizing activity of both fractions, although both contain polysomes. The products synthesized by a cytoplasmic supernatant-directed system included all the VSV structural proteins except the glycoprotein, whereas in an in vitro system directed by the cytoplasmic pellet there is a marked reduction in synthesis of the nucleoprotein (N) and also a small relative increase in synthesis of the glycoprotein. Addition of uninfected, preincubated HeLa or L-cell S10 or a HeLa ribosomal fraction to the VSV-infected cytoplasmic pellet results in a 30- to 60-fold stimulation of (35)S-methionine incorporation. However, these uninfected extracts do not stimulate (35)S-methionine incorporation by the infected crude cytoplasmic extract or the cytoplasmic supernatant. The products synthesized by the stimulated cytoplasmic pellet now include sizeable amounts of the glycoprotein in addition to the other VSV structural proteins.  相似文献   

2.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

3.
The cytoplasm of vesicular stomatitis virus (VSV)-infected BHK cells has been separated into a fraction containing the membrane-bound polysomes and the remaining supernatant fraction. Total poly(A)-containing RNA was isolated from each fraction and purified. A 17S class of VSV mRNA was found associated almost exclusively with the membrane-bound polysomes, whereas 14,5S and 12S RNAs were found mostly in the postmembrane cytoplasmic supernatant. Poly(A)-containing VSV RNA synthesized in vitro by purified virus was resolved into the same size classes. The individual RNA fractions isolated from VSV-infected cells or synthesized in vitro were translated in cell-free extracts of wheat germ, and their polypeptide products were compared by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The corresponding in vivo and in vitro RNA fractions qualitatively direct the synthesis of the same viral polypeptides and therefore appear to contain the same mRNA species. By tryptic peptide analysis of their translation products, the in vivo VSV mRNA species have been identified. The 17S RNA, which is compartmentalized on membrane-bound polysomes, codes for a protein of molecular weight 63,000 (P-63) which is most probably a nonglycosylated form of the viral glycoprotein, G. Of the viral RNA species present in the remaining cytoplasmic supernatant, the 14.5S RNA codes almost exclusively for the N protein, whereas the 12S RNA codes predominantly for both the NS and M proteins of the virion.  相似文献   

4.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

5.
6.
Membrane-bound polysomes from vesicular stomatitis virus (VSV)-infected HeLa cells synthesize predominantly three proteins in an in vitro protein synthesizing system. These three proteins have different molecular weights than the viral structural proteins, i.e., 115,000, 88,000, and 72,000. Addition of preincubated L or HeLa cell S10 or HeLa cell crude initiation factors stimulates amino acid incorporation and, furthermore, alters the pattern of proteins synthesized. Stimulated membrane-bound polysomes synthesize predominantly viral protein G and lesser amounts of N, NS, and M. In vitro synthesized proteins G and N are very similar to virion proteins G and N based on analysis of tryptic methionine-labeled peptides. Most methionine-labeled tryptic peptides of virion G protein contain no carbohydrate moieties, since about 90% of sugar-labeled peptides co-chromatograph with only about 10% of methionine-labeled peptides. Sucrose gradient analysis of the labeled RNA present in VSV-infected membrane-bound polysomes reveals a relative enrichment in a class of viral RNA sedimenting slightly faster than the total population of the 13 to 15S mRNA, as compared to a VSV-infected crude cytoplasmic extract. A number of proteins, other than the viral structural proteins, are synthesized in the cytoplasm of five lines of VSV-infected cells. One of these proteins has the same molecular weight as the major in vitro synthesized protein, P(88). In vitro synthesized protein P(88) does not appear to be a precursor of viral structural proteins G, N, or M based on pulse-chase experiments and tryptic peptide mapping. Nonstimulated membrane-bound polysomes from uninfected HeLa cells synthesize the same size distribution of proteins as nonstimulated VSV-infected membrane-bound polysomes.  相似文献   

7.
Aedes albopictus cells (clone LT-C7) showed a marked cytopathic effect and inhibition of protein synthesis (both host and viral) after infection with vesicular stomatitis virus (VSV), but only if (i) cultures were incubated at 34 degrees C rather than 28 degrees C and (ii) serum was present in the medium (S. Gillies and V. Stollar, Mol. Cell. Biol. 2:66-75, 1982). To learn more about how protein synthesis is shut off in VSV-infected A. albopictus cells, we have compared cell-free protein synthesis in extracts prepared from VSV-infected cells and control cells. Extracts prepared 6 h after infection from VSV-infected cells maintained at 34 degrees C in the presence of serum reflected what was observed with intact cells in at least two respects: (i) they showed a markedly diminished capacity to carry out protein synthesis (whether directed by endogenous or exogenously added mRNA), and (ii) there was decreased phosphorylation in vitro by [gamma-32P]ATP of a specific ribosomal protein (Gillies and Stollar, Mol. Cell. Biol. 2:66-75, 1982). In addition, and consistent with a block at the level of initiation, the formation of 80S initiation complexes, as measured by binding of VSV 12 to 18S mRNA, was reduced in the inactive extracts. Addition of an S-100 fraction from uninfected cells to the inactive extract reversed each of the aforementioned changes; i.e., it restored protein synthetic activity, it stimulated the formation of 80S initiation complexes, and it increased phosphorylation of the specific ribosomal protein referred to above. The active component in the S-100 fraction was heat labile and non-dialyzable and, upon ammonium sulfate fractionation of the S-100 fraction, was found in the 40 to 70% saturation fraction. Our findings suggest that VSV infection of A. albopictus cells inhibits protein synthesis by inactivating a macromolecular component, probably a protein, in the S-100 fraction which may be involved in the initiation of protein synthesis. More specifically, we suggest that this component is involved in the joining of the ribosomal subunits to form 80S initiation complexes.  相似文献   

8.
9.
Infection of mouse L-cell spinner cultures by vesicular stomatitis virus (VSV) effected the selective translation of viral mRNA by 4h after viral adsorption. Cell-free systems prepared from mock- and VSV-infected cells reflected this phenomenon; protein synthesis was reduced in the virus-infected cell lysate by approximately 75% compared with the mock-infected (control) lysate. This effect appeared to be specific to protein synthesis initiation since (i) methionine incorporation into protein from an exogenous preparation of initiator methionyl-tRNA gave completely analogous results and (ii) the addition of a ribosomal salt wash (containing protein synthesis initiation factors) stimulated protein synthesis by the infected cell lysate but had no effect on protein synthesis by the control. Micrococcal nuclease-treated (initiation-dependent) VSV-infected cell lysates were not able to translate L-cell mRNA unless they were supplemented with a ribosomal salt wash; a salt wash from ribosomes from uninfected cells effected a quicker recovery than a salt wash from ribosomes from infected cells. When salt wash preparations from ribosomes from uninfected and infected cells were tested for initiation factor 2 (eIF-2)-dependent ternary complex capacity with added GTP and initiator methionyl-tRNA, we found that the two preparations contained equivalent levels of eIF-2. However, initiation complex formation by the factor from virus-infected cells proceeded at a reduced initial rate compared with the control. When the lysates were supplemented with a partially purified eIF-2 preparation, recovery of activity by the infected cell lysate was observed. Mechanisms by which downward regulation of eIF-2 activity might direct the selective translation of viral mRNA in VSV-infected cells are proposed.  相似文献   

10.
S A Moyer  A K Banerjee 《Cell》1975,4(1):37-43
The virion-associated RNA-dependent RNA polymerase of vesicular stomatitis virus (VSV) synthesizes in vitro two size classes of RNA products similar to those observed in VSV-infected cells. One RNA product sediments at 31S with an approximate molecular weight of 2.1 X 106. The smaller products consist of at least three classes of RNA sedimenting at 17S, 14.5S, and 12S with molecular weights of 0.7 X 106, 0.52 X 106, and 0.37 X 106, respectively. Hybridization experiments show that both the 31S and 12-18S RNA products are complementary to the genome RNA, and that each class is transcribed from different nucleotide sequences. From the molecular weights of the RNA species and the hybridization experiments, it seems that almost the entire VSV genome RNA is transcribed in vitro.  相似文献   

11.
12.
13.
Ribosomal-type ribonucleic acid from rodent mitochondria   总被引:7,自引:6,他引:1       下载免费PDF全文
1. Highly purified mitochondria containing 3.0mug of RNA/mg of mitochondrial protein were prepared from rat liver by differential centrifugation. 2. RNA, labelled with [(32)P]P(i) or [(3)H]orotate, was isolated from these mitochondria by a phenol extraction method. The RNA sedimented at 15S and 13S on sucrose density gradients. Its nucleotide composition was 23% uridylate, 30% adenylate, 22% guanylate and 25% cytidylate. 3. RNA from mouse L cells was labelled with [(3)H]-uridine in the presence of 0.1mug of actinomycin D/ml to suppress the synthesis of cytoplasmic rRNA. The RNA isolated from crude L-cell mitochondria by a cold-phenol-sodium dodecyl sulphate method had components sedimenting at 15S and 12.5S. These components had an electrophoretic mobility on agarose-acrylamide gels of 21 and 12S(E) compared with 28 and 18S(E) for cytoplasmic rRNA. The nucleotide composition was 26% uridylate, 34% adenylate, 18% guanylate and 22% cytidylate. 4. RNA extracted from crude L-cell mitochondria by a hotphenol-sodium dodecyl sulphate method had an additional component sedimenting at 21S and having an electrophoretic mobility of 18S(E). It was probably DNA because of its sensitivity to deoxyribonuclease and its insensitivity to ribonuclease and alkali. It was present in nuclear fragments contaminating the crude mitochondrial fraction and could be removed by deoxyribonuclease or isopycnic-gradient centrifugation.  相似文献   

14.
15.
We have compared the effects of infection with herpes simplex virus (HSV) and vesicular stomatitis virus (VSV) on the protein synthetic apparatus of Friend erythroleukemia cells. Previous studies demonstrated that infection with HSV rapidly shuts off the synthesis of globin and other cellular polypeptides (Y. Nischioka and S. Silverstein, 1977, Proc. Natl. Acad. Sci. U.S.A. 74: 2370-2374). In contrast to these findings, globin synthesis persists in Friend erythroleukemia cells infected with VSV. Physical measurements of the size of bulk-infected cell mRNA, using hybridization with polyuridylic acid, demonstrated that there was no detectable change in the size of mRNA's after infection with VSV. A comparison of the kinetics of hybridization of cytoplasmic RNA extracted from cells infected with either HSV or VSV with globin complementary DNA revealed that by 4 h postinfection with HSV only about 15% of the globin mRNA sequences remained, whereas there was no discernible change in the sequence abundance of globin mRNA in VSV-infected cells.  相似文献   

16.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

17.
After infection of baby hamster kidney cells with vesicular stomatitis virus (VSV), processing and assembly of small nuclear ribonucleoproteins (snRNP) were rapidly inhibited. The U1 and U2 snRNAs accumulated as precursor species approximately 3 and 10 nucleotides longer, respectively, than the mature RNAs. Alteration in snRNP assembly was noted because the precursor snRNAs were not associated with the U-series RNA-core protein complex in infected cells. However, antibodies specific for the U2 RNA-binding protein, A', were able to precipitate pre-U2 RNAs from VSV-infected cells. These results indicated that precursors to U2 RNA were bound to A' and remained bound during virus infection. Analysis of the synthesis of proteins normally associated with U1 and U2 RNAs indicated that synthesis was unaffected at times when snRNP assembly with core proteins was blocked by the VSV. These findings suggested that the core proteins associate with one another in the absence of the snRNAs in VSV-infected cells. They further suggest a correlation between the inability of the core complex to bind the U-series snRNPs and the failure to process the 3' ends of U1 and U2 RNAs in VSV-infected cells. These effects of VSV on snRNP assembly may be related to the shutoff of host-cell macromolecular synthesis.  相似文献   

18.
19.
20.
The synthesis of different viral ribonucleic acid (RNA) species was studied in chick embryo (CE) and mouse L-cell cultures infected with the Herts strain of Newcastle disease virus (NDV(o)) and a mutant isolated from persistently infected L cells (NDV(pi)). In CE cell cultures, both viruses synthesized significant amounts of 54, 36, and 18S RNA. However, in L cells, synthesis of 54S virion RNA was markedly reduced. From these results, it seems likely that the low yield of infective virus in L cells is due to a deficient synthesis of 54S RNA in this host. On this basis, however, it is apparent that the "covert" replication of NDV(o) in L cells is due to factors other than viral RNA synthesis. When low concentrations of interferon were used to pretreat CE cells, a differential effect on the synthesis of various RNA species was observed. The 18S RNA of NDV(o) was more sensitive to interferon action than the 36 and the 54S RNA species. In contrast, the 18S RNA of NDV(pi) was less sensitive than the 36S and the 54S RNA. The inhibition of 54S RNA synthesis correlated with the reduction of viral yield and explained the greater sensitivity of NDV(pi) to interferon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号